

ENGINEERING GEOLOGY OF MELTON ENGINEERING GEOLOGY

P G DAHLHAUS
UNPUBLISHED REPORT 1986/5

ABSTRACT

An engineering geological mapping program has been conducted to provide essential geological information for use by planners and engineers working in the Melton Development Area, Victoria.

A review of past and current examples of thematic mapping for land use purposes was initially conducted. A data base of over 800 sampled locations was collated from previous work, and supplemented by additional drilling and testing in areas where little was known of the geological materials. This information was compiled using available computer facilities and combined with traditional field mapping methods. A map folio presenting individual aspects of the engineering geology was produced.

Large areas of expansive soil have been identified and mapped, and an area affected by soil subsidence was examined in detail. Statistical methods (block kriging) have been used to determine the thickness of soil in the map area. Assesments of the suitability for urban development have been made.

Computer draughting was used to produce the maps, providing the ability for rapid future revision.

This report, which is one of seven unpublished reports on the map area, describes the engineering geology.

[^0]
CONTENTS

Page
INTRODUC'TIONi
ENGINEERING GEOLOGY
1 Isopleth Mapping of Soil Thickness 1
1.1 Numeric surfaces
1.1 Numeric surfaces
1
1
1.2 Interpolation techniques 2
1.3 Kriging
3
3
1.3.1 Variograms
3
3
1.3.2 Simple kriging
5
5
1.3.3 Block kriging
6
6
1.3.4 Universal kriging
7
7
1.4 Soil thickness mapping - Definitions and parameters
8
8
1.5 Numeric surface computations
9
9
1.5.1 Variogram computation
11
11
1.5 .2 Kriging
11
11
1.6 Validity checking
15
15
1.7 Numeric surface representation 16
1.8 Geological interpretation
16
16
1.9 Geotechnical interpretation 20
1.10 Further work
20
20
2 Groundwater 20
2.1 Water quality
22
22
3 Engineering Properties of the Soil
27
27
4 Suitability for Development 31
4.1 Past assessments 31
4.2 Building foundations 34
4.2.1 Class P (problem) sites
43
43
4.3 Sewerage
44
44
4.4 Roadmaking 46
FIGURES
1 Theoretical variograms
4
4
2 Distribution of soil depth data set. 10
3 Variogram of soil depth data set.
12
12
Directional variograms of soil depth data set. 13
5 Spherical model fitted to soil depth variogram. 14
Shade colour plot of soil depth values. 17
7 Soil depth isopleths. 18
Confidence values of soil depth. 19
9 Standing groundwater level. 23
10 Potentiometric surface of groundwater.
24
24
11 Stiff diagrams showing water quality. 26
12 Soil test data distribution
28
28
13 Several possible individual-value simple character scales.14 Several possible individual-value compoundcharacter scales.
15 Chernoff face 29
16 Flag map of liquid limit value. 30
17 Soil depth isopleths and liquid limit values. 32
18 SCA land units. 33
19 Soil classification map. 35
20 Site classification. 39 42

TABLES

1 Soil depth data quality.
2 Open standpipe readings. 9
3 Groundwater quality 21
4 Limits for total soluble salts and magnesium indrinking water of livestock.
5 Description of facial features and ranges. 26
6 SCA Land Units - Development limitations. 30
7 Soil classification table. 36
8 Site classes. 40
9 Current domestic waste water disposal methods. 41
APPENDICESAPPENDIX I Simple kriging example.APPENDIX II Check plots for soil depth.
APPENDIX IIIAPPENDIX IV
Building regulations for footings and foundations. Site classification method.

ACKNOWLEDGEMENTS

The assistance of the following organisations (and people) is gratefully acknowledged:

Engineering Computer Services Pty Ltd (P. Hillsden) Road Construction Authority (T. Flintoff) Kinhill-Rofe Pty Ltd (J. Brewer) Farley \& Lewers Pty Ltd (M. Cameron) Department of Agriculture and Rural Affairs (J. Maher, J. Martin) Land Protection Service (D. Howe, L. White) State Chemistry Laboratories (P. Briner) Public Works Department (J. Kip)
CRA Exploration Ltd (T. Dixon)
Urban Land Authority (H. Bartlett)
Health Commission of Victoria (P. Quaill)
Shire of Melton (L. Merrit)
Railway Construction Board (J. Cooney)
State Electricity Commission (W. Regan)
Dandenong Valley Authority (J. Crouch)

LIST OF ABBREVIATIONS used in reporting the Melton Engineering Geology Mapping project.

Abbreviation Definition

AASHO	American Association of State Highway officials
AEBIRA	Australian Engineering and Building Industry Research Association
AHD	Australian Height Datum
AM	Australian Metric Grid
AS1276	Australian Standard AS1276-SAA Site Investigation Code
AS1289	Australian Standard As1289 - Methods of eresting son code
AS 2870	Australian Standard AS2870 - Residential Slabs and footings
CAD	Computer Aided Drafting/Design
CBD	Central Business District
CBR	California Bearing Ratio
CRB	Country Roads Board
CSIRO	Commenwealth Scientific and Industrial Research organisation
DITR	Department of Industry, Technology and Resources
DOE	Department of Environment
DVA	Dandenong Valley authority
ECS	Engineering Computer Services Pty. Ltd.
EDP	Electronic Data Processing
EPA	Environment Protection Authority
F\&L	Farley and Lewers Pty ltd
PAO	Food and Agriculture organisation
FS	Free Swell
GEOSIS	Geoscience Spatial Information System
GLQ	Genesis-Lithology-Qualifier
GSV	Geological survey of Victoria
tagg	International Association of Engineering Geology
IGS	Institute of Geological Sciences
LL	Liquid Limit
LPS	Land Protection Service
LS	Linear Shrinkage
MMBW	Melbourne Metropolitan Board of Works
MPE	Ministry for Planning and Environment
MSA	Melton Sewage Authority
MSICC	Melton - Sunbury Interim Co-ordinating Committee
MURL	Melbourne Underground Rail Loop
OGS	Ontario Geological Survey
PL	Plastic Limit
PI	Plasticity Index
RCA	Road Construction Authority
SAA	Standards Association of Australia
SCA	Soil Conservation Authority
SCs-USDA	Soil Conservation Service - United States Department of Agriculture
TDS	Total Dissolved Solids
UBr	Uniform Building Regulations
ULA	Urban Land Authority
USGS	United States Geological Survey
VBR	Victorian Building Regulations
WHO	World Health organisation
XRD	X -Ray Diffraction

INTRODUCTION

The City of Melton is located on the Western Highway 39 km WNW of Melbourne and was chosen by the Victorian Government for satellite township development in 1973.

The Melton Engineering Geological Mapping Project commenced in March 1983, as part of an ongoing mapping scheme conducted by the Geological survey of Victoria (GSV), now a branch of the Department of Industry, Technology and Resources (DITR). The project aims at the production of a map (or maps) depicting relevant geological features and properties in a useful manner for engineers and planners working in the Melton Development Area.

An engineering geological map is a thematic map which provides a generalized representation of all those components of a geological environment of significance in land-use planning, and in design, construction and maintenance as applied to civil engineering.

A 'state-of-the-art' review of mapping methods for land-use planning was conducted to examine the past and present progress in a broad context. In particular, medium-scale engineering and environmental mapping methods, and their map presentation formats, were examined.

A review of readily accessible data highlighted shortcomings in both the quality and quantity of data outside of the established City of Melton. Consequently, a drilling, sampling and testing program was conducted. Research of previous work and additional geological mapping supplemented the data analysis. The presentation of the study has been largely cartographic, with each component of the geology being a separate theme on a basic map.

Seven reports have been produced in the GSV Unpublished Report series:

Unpublished Report 1986/1
Engineering Geological Mapping - A Review
Unpublished Report 1986/2
Engineering Geology of Melton - The Melton Development Area
Unpublished Report 1986/3
Engineering Geology of Melton - Drilling, testing and mapping program
Unpublished Report 1986/4
Engineering Geology of Melton - Geology and geomorphology
Unpublished Report 1986/5
Engineering Geology of Melton - Engineering geology
Unpublished Report 1986/6
Engineering Geology of Melton - Map presentation of data
Unpublished Report 1986/7
Engineering Geology of Melton - Summary

SNGINEERING GEOLOGY

1 Isopleth Mappin
Thickness is a soil at Melton. The depth on the cost of water stability of light s

ε Soil Thickness

cty of importance to urban development
il cover over the basalt has influence sewerage supply, the foundation tures, and road making costs.

Isopleth maps may be used in engineering geological mapping to depict classes of soil, based on similarities of soil properties. It is implied that areas mapped as a particular class will have values of soil properties similar to those recorded for that class, and different from those of at least some of the other classes. Isopleth mapping is often referred to as 'contouring', by analogy with the mapping of topographic height. However, caution is required, as topographic contours are usually drawn to join points of equal measured height, whereas isopleths join points of inferred equal value. In practice topographic contours can be followed continuously, either on the ground or on a pair of aerial photographs, with the result that they can be drawn as accurately as the surveying equipment allows. Soil isopleths on the other hand must be derived from a set of more or less widely spaced points and are therefore subject to sampling variation.

Isopleths maps of soil thickness may be computed from borehole and test-pit observations by utilising computer packages.

1.1 Numeric surfaces

When mapping soil properties, the distribution of a single property may be displayed by assigning to each class on the map the typical value of that property within its class. The value at any one place is not actually recorded - unless there is a sample point (i.e. a borehole or test-pit) - it is predicted. It is realised that the actual value there will differ from the predicted value. The statistical rationale can be expressed as:

$$
\begin{equation*}
z_{i j}=\mu+\alpha_{j}+\epsilon_{i j} \tag{1}
\end{equation*}
$$

where $z_{i j}$ the value of a property at any place i in class j is the sum of three terms:
μ the general mean of the property for the whole area;
α_{j} is the difference between the general mean and the mean of class j ; and
$\epsilon_{i j}$ is a random component distributed normally with zero mean and variance σ_{w}^{2}.

The parameters $\mu, \alpha_{j}, \sigma_{w}^{2}$ and can all be estimated from data as say \bar{z}, a_{j} and s_{w}^{2} respectively by the least squares analysis and analysis of variance. The predicted value for an unrecorded point in class j is $\bar{z}+a_{j}$, and confidence limits are determined from s_{w}^{2}, the sample within-class variance. The smaller is σ_{w}^{2} more precise will any prediction be, and the more valuable the map.

Where measured data are sparse, as they often are, this approach to prediction and mapping is the only feasible one. It obviously depends on there being an association between the property of interest and the classification, even though the classes are recognized independently in terms of the model, $\left|\alpha_{j}\right|$ must on average be substantially greater than zero, otherwise the classification does not help to predict the property. However the procedure takes no account of the spatial arrangement of the data points and their relations to predicted points, nor of any gradation of values across boundaries. These can only be of consequence when data are dense, specifically when they are spatially dependant, and in that event a means of prediction and mapping that uses the spatial information is obviously to be preferred.

In such circumstances interpolation provides an alternative to classification for predicting values of a property at unvisited points. Mapping can be achieved by envisaging such values as forming a continued statistical surface over the map plane, which can be represented by isopleths.

1.2 Interpolation techniques

Several interpolation techniques are available, especially in computer programs for automatic contouring. Webster (1977) has breifly reviewed some of these viz: linear interpolation across triangulation, inverse square distance weighted averaging, least square polynomials, Theisson polygons, and kriging.

Apart from linear interpolation across triangles, most of these techniques consist of placing a fine, rectangular (or square) mesh over the entire area and computing a new value of the property at each mesh point. This process is suited to various forms of processing such as smoothing, filtering and fourier transformations. The size of the mesh interval will govern the frequency content of the resultant model and thus the isopleth map detail. Both the type of data and the desired type of map influence the choice of mesh interval and the choice of interpolation technique.

In using weighted interpolation techniques (such as kriging), three steps are involved.

1 Choosing the number of data points in the vicinity of the mesh point being considered. The selection algorithm may locate the closest ' n ' noints in ' x ' number of sectors surrounding the mesh point normally within a certain distance.

2 Determine whether the chosen points are adequate in both number and in distribution.

3 Interpolate the mesh value by taking a weighted average of the data values. The weight is a function of the assigned value, the distance between the data values and an optional smoothing operator distance.

Grids generated by computer packages can be manipulated to:

- limit the grid to a desired polygon,
- expand to fill a given area,
- mask out (or in) any areas,
- take into account faults, discontinuities, and trends, fill
- be scaled, added, subtracted, multiplied, divided, or
restricted to positive values by logarithmic gridding.
The algorithm which chooses data points is important in that the number of points for interpolation plays a significant role. Where the data is suited, kriging has an advantage over other methods which often represent compromises between the mathematically desirable and the computationally feasible. Though these other methods are reasonable for many applications they may give biased interpolation, whilst they provide no estimate of the error of interpolation, nor do they attempt to minimise that error.

1.3 Kriging

Kriging is a form of weighted local averaging that is an optimal means of spatial prediction in the sense that it provides estimates of values at unrecorded places without bias and with minimum and known variance. It is based on the theory of regionalised variables developed by Matheron (1963) and Krige (1966) for the estimation of ore reserves in mining.

1.3.1 Variograms

Kriging depends on first computing an accurate semi-variogram, which measures the nature of spatial dependance for the property. Estimates of semi-variance are then used to determine the weights applied to the data when computing the averages, and are presented in the kriging equations.

The semi-variance is expressed as:

$$
\begin{equation*}
\gamma(n)=\frac{1}{2} V A R[z(i)-z(i+n)]=\frac{1}{2} \sum[z(i)-z(i+n)]^{2} / n \tag{2}
\end{equation*}
$$

and is a measure of the similarily, on average, of an observation z at point i and another point at a given distance n away. In other words, the semi-variance is the average half-squared difference between all pairs of points separated by the same distance, n. The quantity $\left(\gamma^{n}\right)$ can be estimated for integer values of n from the data and the graph of $\gamma(n)$ versus n is the semi-variogram.

The semi-variogram has certain important characteristics which (a) reveal the nature of the geographic variation in the property of interest, and (b) are needed to provide kriged estimates at previously unrecorded points. These are described in reference to Figure 1.

Figure 1. Theoretical Variograms.
In most cases it is found that $\gamma(n)$ increases with increasing n to a maximum, approximately the variance of the data, at a moderate value of h, say a. The distance is known as the range. Points closer than the range are spatially dependant; points further apart bear no relation to one another, unless there is a periodic variation in the soil. When interpolating, the aim is to use only those points closer than the range to the predicted point.

By definition $\gamma(n)=0$ when $h=0$. However, in practice, any smooth curve that approximates the values of the semi-variance is unlikely to pass through the origin. Instead there appears to be a positive finite value to which $\gamma(h)$ approaches as n approaches 0. This intercept is known as the nugget variance, and in general is known as the nugget effect. The terms derive from sampling practice in gold mining where the inclusion of a gold nugget in narrow core is a somewhat chance event. The nugget effect accounts for different results in sampling the same site twice. This may occur for reasons such as poor analytical precision, poor sampling practice, or actual erratic values at low scale. Most semi-variograms of soil properties show nugget effects (Burgess and Webster, 1980a). The nugget variance embraces fluctuation in the soil that occurs over distances much shorter than the sampling interval, and limits the precision of interpolation.

The value at which $\gamma(n)$ levels out is known as the sill. It represents the range of variance due to spatial dependence in the data.

There is no general mathematical formula to describe the shape of soil semi-variograms. A linear model, $\gamma(n)=c_{0}+m h$, is simplest, and will of ten describe $\gamma(h)$ well within range. A spherical model, given by $\left\{\begin{array}{lll}\gamma(h)=c_{0}+c \frac{3}{2} \frac{h}{a}-\frac{1}{2}\left(\frac{h}{a}\right)^{3} & \text { for } 0<h \leqslant a \\ \gamma(h)=c_{0}+c & \text { for } h>a\end{array}\right.$
may also be used. Other models (De Wysian, exponential, ah^{λ} and hole effect) are described by David (1977).

1.3.2 Simple kriging

When estimating a value $z\left(X_{0}\right)$ of a property z at point $\left(X_{0}\right)$ where χ is the vector notation (i.e. $\chi=[X, Y]$), the linear sum, or weighted average, of the observed value is expressed as:

$$
\begin{equation*}
z_{0}=\lambda_{1} z\left(\chi_{1}\right)+\lambda_{2} z\left(\chi_{2}\right)+\ldots \ldots \ldots . . \lambda_{n} z\left(\chi_{n}\right) . \tag{4}
\end{equation*}
$$

where the λ are coefficients or weights associated with the data points, as discussed in section 1.2 .

In kriging, the weights are so chosen that the error associated with the estimate is less than for any other linear sum. The weights take account of the known spatial dependences expressed in the semi-variogram and the geometric relationships among the observed points. In general, near points carry more weight than distant points, points that occur in clusters carry less weight than lone points, and points lying between the point to be interpolated and more distant points screen the distant points in that the latter have less weight than they would otherwise.

The model for simple kriging, analogous to equation (1), section 1.1, for usual survey practice, is:

$$
\begin{equation*}
z(\chi)=\mu_{v}+\epsilon(\chi) \tag{5}
\end{equation*}
$$

where $z(X)$ is the value of the property at χ within a neighbourhood v, μ_{v} is the mean value in that neighbourhood and $\epsilon(\chi)$ is a spatially dependent random component with zero mean and variation defined by:

$$
\begin{equation*}
\operatorname{vaR}[\epsilon(\chi)+\epsilon(\chi+H)]=E\left[\left(\epsilon(\chi)+\epsilon_{(}^{\prime}(\chi+H)\right\}^{2}\right]=2 \gamma(H) \tag{6}
\end{equation*}
$$

and equals $2 \gamma(n)$ if variation is isotropic. It is assumed that μ_{v} is constant for the neighbourhood, though different neighbourhoods may have different means, and that the semi-variogram is the same over the whole area. The last assumption implies that there are no sharp boundaries (faults, cliffs). If such boundaries are known to exist then interpolation is carried out separetely on either side.

The coefficients (or weights) are calculated using the equations:-

$$
\begin{equation*}
\sum_{i=1}^{n} \lambda_{i} \gamma\left(\chi_{i}, \chi_{i}\right)+\mu=\gamma\left(\chi_{i}, \chi_{0}\right) \quad \text { for } i=1,2,3, \ldots . n \tag{7}
\end{equation*}
$$

where $\quad \mu \quad$ is a Lagrange multiplier

The matrix notation is given by : $\left[\begin{array}{l}\lambda \\ \mu\end{array}\right]=A^{-1} B$

$$
\begin{align*}
A & =\left[\begin{array}{cccc}
\gamma\left(\chi_{1}, \chi_{1}\right) & \gamma\left(\chi_{2}, \chi_{1}\right) & \gamma\left(\chi_{3}, \chi_{1}\right) & 1 \\
\gamma\left(\chi_{1}, \chi_{2}\right) & \gamma\left(\chi_{2}, \chi_{2}\right) & \gamma\left(\chi_{3}, \chi_{2}\right) & 1 \\
\gamma\left(\chi_{1}, \chi_{n}\right) & \gamma\left(\chi_{2}, \chi_{n}\right) & \gamma\left(\chi_{n}, \chi_{n}\right) & 1 \\
1 & 1 & 1 & 0
\end{array}\right]: B=\left[\begin{array}{c}
\gamma\left(\chi_{1}, \chi_{0}\right) \\
\gamma\left(\chi_{1}, \chi_{0}\right) \\
\vdots \\
\gamma\left(\chi_{n}, \chi_{0}\right) \\
1
\end{array}\right] \tag{8}\\
& \ddots \quad\left[\begin{array}{c}
\lambda \\
\mu
\end{array}\right]=\left[\begin{array}{c}
\lambda_{1} \\
\lambda_{2} \\
\vdots \\
\lambda_{n} \\
\mu
\end{array}\right] \tag{9}
\end{align*}
$$

The minimum estimation variance is σ_{E}^{2} given by:

$$
\sigma_{E}^{2}=B^{T}\left[\begin{array}{l}
\lambda \tag{10}\\
\mu
\end{array}\right]
$$

The accuracy of kriged estimates depends on the goodness of the computed semi-variogram and two precautions are taken to ensure that the values of $\gamma(n)$ used in the kriging equations are satisfactory. First, the spatial analysis should be performed on long runs of data (or a number of short runs), so that the semi-variances at short lags can be computed from many pairs of comparisons. Second, a sensible model must te chosen to describe the results, and individual estimates of $\gamma(n)$ can be weighted according to the number of comparisons on which the they are based when fitting the model.

An example of simple kriging (Farrelly, 1985) is shown in Appendix I

1.3.3 Block kriging

In simple kriging, the grid points at which we make estimates represent volumes with the same size and shape as the volumes of soil from which the original property was measured. For example, if observations are derived from 10 cm diameter cores, then the estimated grid points are strictly cylinders 10 cm diameter. If the observations were test pits, then the computed grid points would also represent test pits. Although sampling is carried out in this fashion for convenience, economics and time, the observation at a single sample point is usually taken by the observer to represent the surrounding area, or at least the area nearer to it than any other sample point. When interpolating the geologist may wish to interpolate an average value for an area or block many times larger than the actual sampled volume.

Kriging can be carried out over areas, in a procedure known as block kriging. In block kriging, instead of considering a point χ, we consider a region ϑ with an area H with its centre at χ.

The semi-variances between data points and the interpolated point are replaced by the average semi-variances between the data points and all the points in the region. Thus each $\gamma\left(\chi_{i}, \chi_{0}\right)$ of equation 9 is replaced by the integral $\int \gamma\left(\chi_{i} \chi\right) \rho(x) d(x)$ where $p(x)$ is given as follows:

$$
\begin{array}{ll}
\rho(x)=\frac{1}{H_{V}} & \text { if } \chi \text { belongs to } \vartheta \tag{11}\\
\rho(x)=0 & \text { otherwise, }
\end{array}
$$

and
(12)

$$
\int p(x) d(x)=1
$$

The weights for block kriging are therefore given by

$$
\left[\begin{array}{l}
\lambda \tag{13}\\
\mu
\end{array}\right]=A^{-1} s
$$

where

$$
s=\left[\begin{array}{cc}
\left(\gamma\left(\chi_{1}, \chi\right)\right. & p(x) d(x) \tag{14}\\
\int \gamma\left(x_{2}, \chi\right) & p(x) d(x) \\
\vdots & \vdots \\
\vdots \\
\gamma\left(\chi_{n}, \chi\right) & p(x) d(x) \\
1
\end{array}\right]
$$

The estimated variance for the area H is

$$
\sigma_{H}^{2}=s^{T}\left[\begin{array}{l}
\lambda \tag{15}\\
\mu
\end{array}\right]-\iint \gamma(X, Y) p(x) p(y) d(x) d(y)
$$

Although a map drawn from point estimates is the more accurate isopleth map, local minor variation can obscure regional trends. Block kriging results in a smoother map showing average values calculated over a number of broader areas.

1.3.4 Universal kriging

A third means of kriging, universal kriging, takes into account local trends in data when minimising the error associated with estimation. The presence of such trends or drifts is identified qualitatively, and their form found quantitatively by one of two methods. Either (1) a structural analysis may be carried out, which simultaneously estimates semi-variances of the differences between the drift and the actual data. The resulting semi-variograms are then used for the interpolation. Or (2) prior generation of a regional surface and semi-variograms are calculated for the residuals. Simple kriging is then used to produce the numeric surface.

Universal kriging is not comprehensively applicable to soil survey (Webscer and Burgess, 1980), mainly because of the large nugget variances usually encountered, which arise in part because measurements are made on small widely separated volumes of soil. These effectively prevent any distinction between constant and changing drift.

Universal kriging would not be applicable to the data obtained at Melton for these reasons.

1.4 Soil thickness mapping - Definitions and parameters

Soil thickness, like many geological parameters, has a certain amount of subjective judgement incorporated into a definition. Past work in the area (MacIsaac and Key, for the Melton Sewage Authority, 1972) has set a definition of soil thickness as being the depth to powered-auger refusal. A map depicting "rock contours" was produced and used as a guide in the drafting of tenders for the installation of sewerage and storm-water pipelines. Since cost of excavation increases rapidly when basalt is encountered, such guides are valuable.

In the engineering geological sense, soil is defined by "all unconsolidated materials above bedrock" (Bates and Jackson, 1980). This definition includes cobbles and boulders ('floaters') surrounded by soil which are common in residual basaltic soils and such floaters are sufficiently large and unweathered to cause powered-auger penetration refusal when encountered. Thus, power-auger refusal may be a misleading definition for soil depth, although the only feasible one. This in turn, results in a variation soil depth over short distances (which accounts for the large nugget effects in the semi-variograms).

Where a sample point represents an excavated test-pit, the soil depth is taken as depth to excavator refusal. If the sample point represents a borehole drilled by a percussion or diamond drill, then the soil depth is judged from the borelogs as being the top of the first encountered rock which would refuse penetration by a powered-auger.

Sample points where rock was not encountered and points where penetration refusal occured on alluvial gravels or calcareous nodules were not included in the computations. However, they were used in checking the accuracy of the isopleth map on completion.

Approximately 1100 sample points (boreholes and test-pits) were available for scrutiny within the map area. Of these, 648 were selected into the data base which formed the basis for the soil depth computations. The selected points represented those for which a positive soil depth value could be given.

Since the data were collected from several sources, the quality varied according to the origin. For some of the data the locations were approximate, as the coordinates were scaled from locality diagrams included in reports. For other data the sample locations were surveyed.

The soil depth values were generally precise. The only exception was where data from percussion drilling was included - the depths tended to correspond to the length of a drill-rod (i.e. $1.50 \mathrm{~m}, 3.00 \mathrm{~m}$, etc.) in most of the locations. However, for one metre isopleths, this data remains valid.

The quality of the data is tabulated below.

Source	Number of data points	Location technique	Estimated error (metres)	Drilling method	Estimated soil depth error (metres)
GSV	$\begin{array}{r} 184 \\ 24 \end{array}$	Surveyed Scaled	Nil_{5}	Auger + pit Unknown	$\begin{aligned} & \mathrm{Nil} \\ & 1 \end{aligned}$
MSA	207	Scaled	5	Auger + diamond	Nil
RCA	105	Scaled	2	Auguer + pit + diamond	Nil
$F \& L$	105	Scaled	2	Percussion Diamond	$\begin{gathered} 0.5 \\ \text { Nil } \end{gathered}$
Other	23	Scaled	20	Various	0.5

Table 1. Soil Depth Data Quality.
The distribution of data (Fig. 2) presents a challenging difficulty in numeric surface calculations. The 'clumping' of the sample points makes gridding difficult, because the uneven distribution makes the selection of mesh size a problem.

1.5 Numeric surface computation

The numeric surface representing soil depth was computed using a package supplied by Engineering Computer Services Pty Ltd (ECS). The program - GPCKRG - is part of an interactive general purpose gridding and contouring package known as GPC/GPCINT.

GPCKRG allows the computation of the semi-variograms, the fitting of either a simple linear or spherical model, and kriging using simple, block or universal kriging methods. During the computation of the grid manipulations may be made such as

* including trends or faults,
* expansion of the grid beyond the data points,
* applying sinoothing operators to the grid,
* restricting the gridding to a defined polygon,
* limiting the grid to positive values only,
* the use of a sample location tolerance to simulate sampling error,
* limiting the interpolation to a given range, and
* including data from outside the grid area.

The computed grid may then be masked to include or exclude given areas.

1.5.1 Variogram computation

For the data set available, semi-variograms were computed to establish the suitability of the data to kriging. The shape of the variogram computed (Fig. 3) showed a distinct nugget effect, range and sill value. This indicated that the data set is suited to treatment by kriging.

Semi-variograms were computed in the four cardinal directions to check for any possible anisotropies (Fig. 4). The resultant variograms showed no substantial differences in their shapes, which indicated a lack of anisotropy in the data set. The similarities of shape in the directional variograms also indicate the absence of strong regional trends (or drift), which alleviates the need for universal kriging.

From the total variogram, the modelling parameters were chosen. A spherical model was judged to best fit the data, with a nugget of 0.5 metres, a sill of 3.8 metres, and a range of 400 metres. The model is plotted on the variogram in Figure 5.

Several interesting observations can be made from the variograms. The average nugget effect indicates that the uncertainty in sampling the same location twice is 0.5 metres. More simply, this means that the soil depth can only ever be predicted to the nearest half-metre, even in the most frequently sampled locations. The average range of 400 metres indicates that the soil depth can be predicted (with a calculated confidence) from an observation in one place to another place up to 400 metres distant, after which there is no relationship. The sill of 3.8 metres represents the average difference in observations greater than 400 metres apart, or more simply, the maximum error in prediction.

1.5.2 Kriging

The variograms illustrate that the data set is suited to either block or simple kriging techniques. Kriging the data in blocks of 100×100 metres (same as the grid mesh size) was chosen as the most applicable method. This choice is based on an examination of the end requirement, ie. the production of a soil depth map which indicates the average thickness in an area, without being site-specific. By using block kriging the map indicates the average thickness that would be encountered over 100×100 metre cells (ie. $10,000 \mathrm{~m}^{2}$) which provides a suitable basis for making decisions pertaining to an area, rather than a specific site.

The gridding parameters were as follows:
mesh size
scan distance
data distance tolerance
points searched per octant

100 X 100 metres
2800 metres
5 metres

No.	Covar ianc	Population																			
0	3.54	233	508	\|P67	736	199?	950	Q21	B3?	266	1106	161/	148	\|26\%	118	[2e9	ke2d	3011	1382		520

Na.	Cavariana	Population																			
1	3.48	70	191	219	231	221	229	305	251	348	278	349	264	360	291	359	288	302	322	392	324
2	3.19	37	88	184	188	$23 ?$	252	227	$21 ?$	232	232	199	258	222	184	228	209	210	222	204	248
3	3.68	85	155	187	195	271	$23 \square$	297	291	362	354	345	344	375	336	352	412	455	454	478	592
4	3.67	41	74	177	130	198	239	242	278	324	242	268	289	119	307	292	329	334	384	431	44

No.	Covar jance	Population																			
6	3.54		508	P67	736	199?	9501	\|021	63?	Q	1106	161	14	267	118	1e29		301	1382		528

There was no:
grid rotation,
extrapolation beyond the mesh points,
logarithmic gridding,
smoothing,
limit to interpolation, and
restriction to a boundary polygon,
The grid was later masked to exclude the gridded area outside of the Melton development area boundary. This was carried out by utilising another GPC program (GRDMSK).

The gridding parameters were chosen to best fit the density and distribution of the data. The scan radius naturally presents a problem, since it can be seen from the variograms that the radius of search should be 400 metres. Using sample points 2800 metres away to predict mesh point values is not reliable (even though their weighting would be very small), but unfortunately necessary to prevent gaps in the grid. The only alternative would be to acquire more data.

By using a data distance tolerance two problems are simultaneously solved. The first is that kriging is a process which honours the data (subject to the mesh size selected). This assumes that the sampling is repeatable, even when a nugget effect is present, which is not always valid. The use of a distance tolerance simulates possible error in sampling and results in non covariance between samples, which relaxes the criterion to honour the data. The second problem is that much of the data was scaled from plans and diagrams to provide AMG co-ordinates. This introduces a real error (assumed to be in the order of five metres), which can be accounted for by the data distance tolerance.

1.6 Validity checking

The resultant soil depth plot required a validity check in order to assess the end result in terms of the real data. For this purpose an isopleth plot was compared with plots of the distribution of sample points in each range (Figs 1 to 10 , Appendix II). The comparison was good, as would be expected from the gridding method chosen.

A rigorous test was performed by comparing the resultant isopleth map with plots of sample locations which were not included in the data set, but for which minimum a depth of soil is known (Figs 11 to 17, Appendix II). These sampled locations are those where the borehole or test pit did not encounter rock, and so strictly were not originally included. The comparison was generally very good, although in one small area known soil depths were consistently deeper than that predicted by the numeric surface. In this area an adjustment was made by including bores with the known soil depth.

The resultant variogram was little changed (the sill was adjusted to 3.6 metres), and so the overall adjustment to the grid was minimal.

1.7 Numeric surface representation

Two numeric surfaces are produced by the kriging techniques described above.

1 Soil depth

The resultant grid of soil depth values is illustrated as a shade-colour plot in Figure 6. By using shade colour, the minor variations are not so obviously displayed as on the corresponding isopleth plot (Fig. 7). The overall impression of gradation is given, rather than the concept of distinct boundaries.

2 Confidence values

The second surface computed by the program represents the confidence placed on the soil depth values. This surface is illustrated by a shade colour plot in Figure 8. The confidence values are expressed in metres and depict the 'plus-or-minus' values that can be placed on the predicted soil depth values at any given place. As expected, the confidence is high in areas where the data is dense, and poor in areas where data is sparse (as modelled by the variograms).

The confidence values highlight the lack of data in some areas of the map, such as the southeast corner, where the soil depth can be read as one metre plus-or-minus three and a half metres. However, the philosophy behind the attempt to illustrate soil depth is that any information is better than none at all, and the confidence grid can be included as a reliability diagram.

1.8 Geological interpretation

The resultant isopleth map of soil depth illustrates some interesting trends which have geological implications.

The variation in depth of soil may be due to two main causes. Firstly, differential weathering, or weathering that occurs at different rates as a result of variations in composition and resistance of a rock, or differences in intensity of weathering due to topographic or climatic conditions. Secondly, differences in geologic age of various surfaces, resulting in the development of younger and older weathering profiles.

In the Melton development area, the variations in soil depth can be interpreted as being due to a combination of geologic age and differential weathering. For example, the area of Melton closest to Mt Cottrell (i.e. the south-eastern portion of the map) shows uniformly shallow soil. This implies that some lava flows from the past volcanic eruptions are represented here by their shallow weathering profiles. The edge of the flow is bounded by Toolern Creek, the other side of which the soils thicken. These thicker soils would be formed on older lava flows and so have had time to weather deeper at an accelerated rate due to the moisture provided by Toolern Creek.

[^1]

Numerle surface generated	Isopleth interval
using block kriging-	-one metre
$100 \times 100 \mathrm{~m}$. blocks.	$<3 \mathrm{~m} .-$ red
	$3-6 \mathrm{~m} .-$ magente
	$6-9 \mathrm{~m}$. -purple
	$>9 \mathrm{~m} .-$ blue

ENGINEERING GEOLOGICAL MAPPING
OF MELTON. VICT.
Figure 7.

SOIL DEPTH I SOPLETHS

1.9

Geotechnical interpretation
The soil isopleths are a very useful guide to geotechnical parameters for decision making in development planning. The areas where soils are thin present problems for the servicing of developments with sewerage and storm-water drainage. In these areas excavation would often be carried out by expensively and laborously drilling and blasting.

Areas where soils are thick represent the problem areas for housing development, as the basalt soils have high shrink-swell potential, and maximum heave would occur on the thickest soils (section 4.2). Similar consequences relate to road making.

1.10 Further work

The upgrading of the soil isopleth map can be very easily carried out by adding new information to the data set and computing new numeric surfaces to plot. This would refine both the accuracy and confidence of new plots.

One spin-off from using kriging as a gridding technique is that sampling programs can be easily planned to achieve a required confidence value. For example, if soil depths to the nearest metre were required to be known in an certain area, then by perusing the variograms an optimal grid spacing could be chosen to achieve the desired result. This could be useful for the development of large subdivisions, where it is advantageous to know where shallow rock occurs.

2 Groundwater

The nature of the groundwater regime can be an important consideration in the engineering development of urban environments. Shallow groundwater tables can cause settlement of building foundations, as can over-extraction of a groundwater resource (Leggett, 1973). Large expanses of pavement increase runoff from storms and decreases the total amount of water recharging underground supplies. Similarly small residential lot size renders large areas impervious (Leopold, 1968).

Groundwater was not encountered at any time during the drilling program. Several open standpipes were installed in the deeper soil areas, and with one exception, groundwater was not encountered during one year of monitoring. The one exception (Djerriwarrh 102) was adjacent to the Toolern Creek, where water was encountered in gravel beds.

Table 2 documents the monitoring program.
Aspects of the occurrence and distribution of groundwater in the region have been documented by Kenley (1960\&1977), Thompson (1972), Rhia (1975 \& 1976), Plier-Malone (1977), and Williams (1983\& 1986). Essentially, the groundwater in the region occupies the two major sub-horizontal geological formations, the Newer Volcanics and the Werribee Formation (U.R. 1986/4).

Djerriwarrh 100 Harkness Rd

Djerriwarrh 101 Hardy's Rd

Djerriwarrh 102 Shire Pound

Djerriwarrh 103 Buckle Crt

Djerriwarrh 104 The Bullock Trk

Djerriwarrh 105 Cnr Harkness Rd 4 Porteous Rd

Djerriwarrh 106 Bulmans Rd

Djerriwarrh 10
Bulmans Rd

Djerriwarth 108 Bulmans Rd

Kororoit 67
Cnr Ryans Rd
Finchs Rd

Installation				5 Read				
Installation	17.11. 83	3.12.'83	$29.3 .184$	18.7.184	16.8.184	19.9.184	17.10.184	15.11. 84
10.11 .833								
Dry	Dry	Dry	Dry ${ }^{\text {m }}$	$7.5 \mathrm{~m}$ Dry	$7.54 \mathrm{~m}$ Dry	$7.59 \mathrm{~m}$ Dry	$7.57 \mathrm{~m}$	7.56 m
2.75 m								
Dry	Dry	Dry	$\begin{aligned} & 2.7 \\ & \text { Dry } \end{aligned}$	-	$2.47 \mathrm{~m}$ Wet	Area flooded	$1.98 \mathrm{~m}$	2.0 m
14.11 .183								
8.75 m	7.21 m							
Dry	Wet	Wet	$\begin{aligned} & 7.1 \\ & \text { Wet } \end{aligned}$	$7.59 \mathrm{~m}$ Wet	$7.42 \mathrm{~m}$	$7.53 \mathrm{~m}$	$7.17 \mathrm{~m}$	Destroyed
15.11 .838								
12.5 m	12.4 m							
Dry	Dry	Dry	$\begin{array}{r} 12.4 \\ \text { Dry } \end{array}$	$\begin{gathered} 12.4 \mathrm{~m} \\ \mathrm{Dry} \end{gathered}$	$\begin{gathered} 11.94 \mathrm{~m} \\ \text { Dry } \end{gathered}$	$11.94 \mathrm{~m}$ Dry	$11.96 \mathrm{~m}$	$11.96 \mathrm{~m}$
5.2 m	5.1 m	5.1 m	5.1 m					
Dry	Dry	Dry	Wet ${ }^{\text {m }}$	${ }_{\text {Wet }}^{5.0} \mathrm{~m}$	$\begin{aligned} & 4.83 \mathrm{~m} \\ & \text { Dry } \end{aligned}$	$4.88 \mathrm{~m}$	4.89 m	4.89 m
18.11. 83 (${ }^{\text {a }}$								
12.5 m	-	12.0 m						
Dry		Dry	Dry	Dry	$\begin{aligned} & 11.94 \mathrm{~m} \\ & \text { Dry } \end{aligned}$	$\begin{aligned} & 11.36 \mathrm{~m} \\ & \text { Wet } \end{aligned}$	$\begin{aligned} & 11.38 \mathrm{~m} \\ & \text { Dry } \end{aligned}$	$11.36 \mathrm{~m}$
21.11.83 Dry								
7.4 m	-	7.0 m	6.9 m					
Dry		Dry	Dry	Dry	6.7	$6.79 \mathrm{~m}$ Wet	$6.79 \mathrm{~m}$	$6.79 \mathrm{~m}$
8.0 m	-	7.5 m	7.5 m					
Dry		Dry	Dry	Dry	$\begin{aligned} & 7.23 \\ & \text { Dry } \end{aligned}$	$7.31 \mathrm{~m}$ Dry	${ }_{\text {Dry }} 7.32 \mathrm{~m}$	7.31 m
23.11 .83 dry Dry Dry								
3.4 m	-	3.3 m	Destroyed					
Dry		Dry	Destroyed					
25.11. 83								
8.1 m	-	8.0 m	8.0 m					
Dry		Dry	Dry	Dry	$\begin{aligned} & 7.8 \\ & \text { ryy } \end{aligned}$	$7.86 \mathrm{~m}$ Dry	$7.86 \mathrm{~m}$	$7.86 \mathrm{~m}$

Table 2. Open standpipe readings.
Note. From 16.8. 84 the accuracy of recording was improved
Groundwater encountered in bore Djerriwarrh 102
Bore Djerriwarrh 101 was situated in low-lying area.

The Newer Volcanics consist of layered sequences of basalt flows and interbedded soil layers of low permeability. The basalts are differentially cracked by large numbers of thermal contraction joints which represent about 0.5% by volume of the rock and serve both as the main space for water storage and the channelways for water movement. They generally contain at least two separate aquifors - upper and lower - which in places are vertically interconnected and operate as a two aquifer system (Kenley, 1977).

The upper basalt aquifer is an unconfined water table aquifer which is recharged by direct slow infiltration of rain or stream water. The lower basalt aquifer is a confined low pressure aquifer. Water enters this aquifer in areas where it locally outcrops and partly also by vertical leakage from the upper aquifer in places where the low permeability interbeds are lacking.

The Werribee Formation contains a number of porous sand and gravel layers each of which behaves as a confined aquifer under considerable hydrostatic head. The groundwater in this formation occupies the pore spaces between the sand grains which may represent up to 25% by volume of the sand. These sands do not outcrop in the map area, and recharge may be from the north and west where the Formation outcrops, or from downward leakage from the basalt aquifers.

Information on the groundwater in the Melton Development Area is generally lacking. Only 36 of the researched bores had standing water level measurements, while 45 had groundwater quality information. Two numeric surfaces were computed from the data.

The first - a grid of the standing water levels - was computed using a general purpose gridding program (GPCGRD; ECS, 1986). The second - a grid of the height above the AHD of the potentiometric surface - was computed by subtracting the standing water level grid from a grid of the topographic surface. These surfaces are illustrated in Figures 9 \& 10 .

2.1 Water Quality

Table 3 details the quality of the groundwater within the map area.

In general terms, the groundwater in the Melton map area is of the sodium-chloride type with some magnesium sulphate. There are, however, some differences both in concentration and percentage.

A major study of the groundwater conditions of a proposed quarry site (bounded by Ferris Rd, Mt Cottrell Rd and the North-Western Railway) found that two water masses, one in the upper and one in the lower aquifer, can be identified from water quality (Williams, 1986). Figure 11 illustrates this difference where the Stiff diagrams for the upper and lower aquifers from test pump well samples and two farm bores have been compared. The difference is due to a greater percentage of magnesium chloride in the lower aquifer and sodium bicarbonate in

FIGURE 9 . STAMDING LARTER LELELS

168. 98
158.98
198.58
138.58
128.68
118.61
198.
38.68
38.68
88.08
58.58
48.08
38.08 -
28.98 -

Roblur:n x

FIGURE io. GROUNDWATER POTENTIOFETRIC SURFACE

[^2]Table 3. Water quality.
the upper aquifer. These differences are probably caused by the residence time being less in the upper aquifer. The analyses also show a clear cut salinity gradient with depth. In the upper aquifer total dissolved solids (TDS) values of $2020-2480 \mathrm{mg} / \mathrm{l}$ are recorded while in the lower aquifer the values ranged from 2800 - $6600 \mathrm{mg} / \mathrm{l}$.

With the exception of one bore (Djerriwarrh 8003), all the groundwater recorded has levels of total dissolved solids higher than generally recommended for human consumption. The World Health Organisation (WHO) sets a desirable limit of $1500 \mathrm{mg} / \mathrm{l}$ with an objective limit of $500 \mathrm{mg} / \mathrm{l}$. The sodium content is well in excess of the taste threshold recommended by the wHO of 150 mg / l. Generally, the iron content is such that it would cause staining of bathroom fixtures and could stain clothes washed with the water.

The groundwater would be suitable for some stock watering, the limits for TDS and magnesium in drinking water of livestock are given in Table 4.

The agressiveness of water is a more complicated quality to determine, involving many variables related to both the water chemistry and flow rate and the nature of the material under attack. The State Chemistry Laboratory consider that, in general, water with a TDS of $3000 \mathrm{mg} / \mathrm{l}$ or greater is probably aggressive toward metal.

Poultry	3500	-
Pigs	4500	-
Horses	6000	250
Cows in milk	6000	250
Ewes with lambs	6000	250
Beef cattle	10000	400
Adult sheep on dry feed	14000	500

Table 4. Limits for total soluble salts and magnesium in drinking water of livestock.

Figure il. Water quality variation in the aquifers.
(Williams, 1986)

One problem with the quantity of test data is that there are insufficient to form accurate numeric surfaces. Gridding the data and producing isopleth maps is not feasable because of the extreme variability in the data over short distances (in three dimensions), which makes prediction speculative.

The distribution of soil samples tested to determine the various engineering properties is illustrated in Figure 12. The data set is essentially a scatter of points (in three dimensional space) which require graphical representation to study their relationship in any configuration. These graphical pictures are useful to confirm or contradict previous concepts, and may reveal new ideas in a dramatic way.

There are many of these graphical techniques available. The simplest code a single numerical value into a simple character (Fig. 13). Others code single values of two or more variables into one compound character (Fig. 14).

When designing or choosing compound character scales, consideration must be given to whether the scales are (i.e. whether one can easily shift attention from one
separable aspect to another), and whether the coded aspects are individually value-mergeable into impressions of regional trends.

Of the compound character scales shown in Figure 14, the most unusual and versatile is the Chernoff face (Chernoff, 1973). A revised version of the face by Davis (Bruckner, 1978) allows the coding of up to 20 variables (Fig. 15 \& Table 5). Much has been written on the merits and demerits of the use of Chernoff's faces (Wang, 1978).

The major difficulty in trying to represent the Melton soil test data is that the data has variation in all three dimensions (i.e. there are multiple ' z ' values at any x, y location).
Representation of this foliation or layering at quite different levels of ' z ' has not been solved. One suggestion is the procedure of locating the 'most imposing gap' in the collection of ' z ' values for nearby (x, y) points followed by smoothing (Tukey \& Tukey, 1980). Then to study the foliated structure several kinds of plots can be generated, such as smoothed gap location values, display the original points coded in some way to indicate which layer they are in, or make separate displays for the points in each layer. All these methods, however, are inappropriate, since the variables still require 'layering' into intervals.

In representing geochemical data, the use of 'flag maps' can overcome the difficulty of three dimensional representation (Farrelly, pers. com., 1984). Figure 16 shows the liquid limit values illustrated as a flag map. From this it can be seen that the geographic variation and the variation with depth is not clearly represented. In general, the area to the north and west have higher liquid limit values than the areas to the south and east.

Figure 13 . Several possible individual-value simple character scales. (Turkey \& Tukey, 1980)

Figure 14. Several possible individual-value compound character scales. (Tukey \& Tukey, 1980).

Figure 16.
Chernoff Face. (Bruckner, 1978)

Variable		Facial Feature $\quad \begin{gathered}\text { Default } \\ \text { Value }\end{gathered}$		Range	
${ }_{1}$	controls h*	face width	. 60	. 20	. 70
${ }_{2}$	controls 0*	ear level	. 50	. 35	:65
x_{3}	controls h	half-face height	. 50	. 50	1.00
${ }^{4} 4$	is	eccentricity of upper ellipse of face	. 50	. 50	1.00
x_{5}	is	eccentricity of lower ellipse of face	1.00	. 50	1.00
x_{6}	controls	length of nose	. 25	. 15	. 40
x_{7}	controls $\mathrm{P}_{\text {m }}$	position of center of mouth	. 50	. 20	. 40
${ }_{8}$	controls	curvature of mouth	0.00	4.00	4.00
${ }^{\prime} 9$	controls	length of mouth	. 50	. 30	1.00
${ }^{x_{10}}$	controls $y_{\text {e }}$	height of center of eyes	. 10	0.00	. 30
${ }^{11}$	controls x_{e}	separation of of eyes	. 70	. 30	. 80
${ }^{12}$	controls 0	slant of eyes	. 50	. 20	. 60
${ }^{13}$	is	eccentricity of eyes	. 60	. 40	. 80
${ }^{x_{14}}$	controls $L_{\text {e }}$	half-length of eye	. 50	. 20	1.00
${ }^{\times} 15$	controls	position of pupils	. 50	. 20	. 80
${ }^{16}$	controls y_{b}	height of eycbrow	. 80	. 60	1.00
${ }^{x_{17}}$	controls 0** -0	angle of brow	. 50	. 00	1.00
${ }^{x} 18$	controls	length of brow	. 50	. 30	1.00
${ }^{\times 19}$	controls r	radius of ear	. 50	. 10	1.00
${ }^{20}$	controls	nose width	. 10	. 10	. 20

Table 5 . Description of facial features and ranges. (Bruckner, 1978)

The correlation of high Atterberg limit values, LS values and FS values with areas of deeper soil is quite good (Fig. 17) These areas with high swell potential and deep soils constitute the worst possible conditions for development. In these areas the soil will exhibit large shrink-swell values and have the maximum depth (therefore the maximum volume) for heave (section 4.2)

4 Suitability for Development
 4.1 Past assessments

In their assessment of the existing environment at Melton, Clarke Gazzard Planners Pty. Ltd. found:
"Foundation conditions experienced in Melton are similar to those in Melbourne's Western Suburbs.

The material underlying most of the study area is of basaltic clay type. It is moderately expansive but does not present serious problems nor impose significant cost penalties in normal types of single and double storey domestic and commercial construction.

Design of services and foundations needs to compensate for some seasonal fluctuations.

Minor areas such as that in the south east near Greigs Road where Rockbank Association soil occurs could present problems in road construction. Special measures may need to be taken to combat erosion in the zones of alluvium associated with Toolern Creek and most extensive in the north east and near the reservoir in the south west of the Designated Area." (Clarke Gazzard, 1976)

This assessment was based on a CSIRO terrain classification map (Grant, 1972) produced at a scale of $1: 250000$, and enlarged to approximately 1:55555 for inclusion in their report. The Terrain Patterns of this map compare remarkably closely to the $1: 250000$ Melbourne geology map (1972). Both these maps are erroneous.

On the matter of soil classification (presumably in the engineering sense), Clarke Gazzard Planners Pty Ltd concluded:
"The major proportion of the study area is underlain by a basaltic clay type material. This material is similar to that which occurs in the western suburbs of Melbourne, in summer being very hard with considerable surface cracking whilst in winter it is moist and puggy. It does not present any serious problems in regard to conventional domestic or commercial types of building up to two storeys in height when properly designed to account for the seasonal movements and the expansive properties of the soil. Excavations for footing or services is somewhat more difficult because of the presence of rock floaters which vary considerably in size and may require the use of explosives to achieve the desired shape. Such difficulties in excavation are reflected in higher earthwork costs than would apply in other areas.

Based on the preliminary information available soil conditions in the study area do not represent a planning constraint." (Clarke Gazzard, 1976)

Bore depth shown
In brown
Scale $1: 1000$
Liquid IImit value
shown in green
Scale 1:20

ENGINEERING GEOLOGICAL MAPPING OF MELTON, VICT.

Figure 16 .
LIQUID LIMIT VALUES

Following recommendations made in the abovementioned report, the DVA was commissioned to examine the requirements for drainage and flood mitigation at Melton. As a part of this study the DVA requested the SCA to report on the land capability of the area, part of which examined the suitability of particular areas for subdivision and septic effluent disposal.

The investigation identified 12 separate land units, based on topography, drainage line entrenchment and soil types. (Fig. 18) The capabilities for the various units for urban subdivision are presented in Table 6 (SCA, 1978).

This study highlights the benefits of an initial rapid assessment, for planning purposes. The important aspect is that certain land was recognised as being poorly suited to subdivision.

A further study by White and Kelyneck (1985) delineated 32 map units describing a specific topographic element and associated soil type. The capability of the land was then assessed for various land utilisations (viz. secondary roads, septic tank absorption fields, building foundations, farm dams, shallow excavations, rural subdivisions, and urban developments).

This study emphasizes the pitfalls in rapidly producing maps which imply that a detailed study of the area has been made. Examples of poor assessments are easily found - the area affected by gilgai and subsidence 'sinkholes' (U.R. 1986/4) is rated as "good" for building foundations while the area between Toolern Creek and Gisborne-Melton Road (which is here considered good) is rated by the assessment as being "very poor".

4.2 Building Foundations

The geological conditions beneath urban areas provide the ultimate support for all structures in that city. The relevance of the engineering properties of the geological foundation materials has therefore been studied for centuries. Since the evolution of cities in society, the construction of buildings has been subject to regulatory control, often including rules regarding foundation conditions. The Code of Hammurabi (2067-2025 BC) is thought to be the first set of building regulations ever recorded (Leggett, 1973).

In Victoria, the building regulations first incorporated strict control of the foundations for building construction in 1980, when an amendment to the Uniform Building Regulations (UBR) was introduced in response to pressure from the building and insurance industries to decrease the incidence of distress in domestic housing. There were several reasons for this. Firstly, the trend in housing from the 1950 's had been toward single-leaf masonry veneer construction ('brick veneer'). This form of construction is less tolerant to movement (i.e. less flexible) than the 'weatherboard', or 'fibro' houses of the pre-1950's. In addition, the growing desire for quality and the increased

SCALE $1: 50000$

NON CREEK ASSOCIATED UNITS

B-Basalt Plain
BG - Gilgoid Basalt Plain
BR - Stony Rises on Besalt
AH - Higher Alluvial Terrace
S - Sinkhole Plain
r - Tertiary Plateau

CREEK ASSOCIATED UNITS
D - Dished Drainage Lines H-Hilly Sided Drainage Lines
G - Stony Gorge
DG - Deep Gorge
NG - Northern Toolern Creek Gorge AL - Low Level Alluvium

ENGINEERING GEOLOGICAL MAPPING OF MELTON, VICT.						
Figure 18.						
SCA LAND UNITS						
(SCA. 1978)						

Non creek associated units	Capability	Factors causing limitations
Basalt Plain (B)	Fair	Shrink-swell, drainage, rock, erosion during development
Gligaied Basalt Plain (BG)	Fair to Poor	Shrink-swell, drainage, rock, erosion during development
Stony Rises on Basalt (BR)	Fair to Poor	Depth to rock
Higher Alluvial Terrace (AH)	Fair	Shrink-swell, drainage, erosion during development
Sink-hole Plain (S)	Poor	Subsidences
Tertiary Plateau (T)	Fair	Erodibility
Creek Associated Units		
Dished Drainage Lines (D)	Fair	Lower areas flood, shrinkswell, erosion during development
Hilly-sided Drainage Lines (H)	Poor	Slope, depth to rock, flooding on low level terraces
Stony Gorge (G)	Very Poor	Slope, rock outcrop
Deep Gorge (DG)	Very Poor	Steep, unstable banks
Northern Toolern Creek Gorge (NG)	Very Poor	Unstable, steep banks
Table 6. SCA Land Units - De	evelopment	mitations.

awareness of consumer rights meant that house owners were less forgiving toward signs of distress. Less geologically suitable land was being subdivided as Melbourne's western and south-western suburbs grew. A trend toward tree planting in home gardens, particularly native gardens, also increased the incidence of distress, since most of the problems were with seasonal movement of expansive soils. This same ammendment to the regulations also required that a builder guarantee his/her work for six years.

In 1983 the Victoria Building Regulations (VBR) were introduced to bring Victoria into general compliance with regulations in other states. The relevant section of these regulations covering footings and foundations is
included as Appendix III. Essentially these regulations state that foundations are to meet three requirements:
i) Assessment of adequacy - (regulation 32.2)

The adequacy of foundations shall be based on approved
a) well established and relevant local knowledge and experience of foundation conditions in the vicinity of the proposed building; or
b) tests on the foundation materials.
ii) Allowable bearing pressures - (regulation 32.4)
the bearing pressure on the foundation of a building shall not exceed the values given in the regulations unless-
a) an investigation of the foundations has been conducted and the building surveyor is satisfied in the light of the report on that investigation, that higher bearing pressures are justified; or
b) an investigation of the site has been conducted under AS1726 and the bearing pressures are based on the information obtained from that investigation.
iii) Foundation classification (sub-regulations $3 \& 4$, regulation 33.4)

The classification of the foundation of any site on which footings are to be constructed shall be in accordance with the "Classification of Expansive Behaviour of Melbourne Soils for Domestic Construction" published by CSIRO and AEBIRA (Australian Engineering and Building Industry Research Association). (sub-regulation 3)

In areas outside the Metropolitan area (those shown in figure 3 of the publication referred to in sub-regulation (3)) the site on which the footings are proposed to be constructed shall be similarly classified by adopting, where practicable, the principles stated in that publication and taking into account experience or knowledge of local or traditional building construction practices. (sub-regulation 4)

The last of these three requirements has special relevance at Melton. The classification system relates the expected expansive behaviour of the foundation to the performance of the minimum standard footing design recommendations. Three categories of movement are used, viz. stable, intermediate and unstable.

The soils of Melbourne are subdivided primarily in terms of their geological origin. A simplified map of the major soil types referred to in the CSIRO and AEBIRA publication is reproduced as Figure 19. Soils of the one geological origin are then further subdivided on the basis of their typical soil profile. Table 7 reproduces the classification.

The requirements for the classification of sites and the design and construction of residential slabs and footings are now covered by Australian Standard AS2870-1986 (Residential Slabs and Footings). The standard was prepared in response to an Australia-wide need for guidance on the design of slabs and footings for houses, and although a wide range of conditions is covered, the standard places particular emphasis on the design for reactive clay sites susceptible to significant ground movement due to moisture changes. The standard may be used to satisfy the requirement that the structural design of footings and floor slabs shall take account of the following:
a) Swelling and shrinkage movements of reactive clay soils due to moisture changes.
b) Settlement of compressible soils or fills
c) Distribution to the subgrade of the applied loads
d) Tolerance of the superstructure to movement

The standard sets out the requirements for:
a) the classification of a site; and
b) the design and construction of a footing system, including slab supported on the ground, strip and pad footings or a piled or piered system, which supports a masonry or framed one or two storey house, extension or outbuilding.

The sections of the standard relevant to site classification are included in Appendix IV.

Essentially, the site classes are designated as follows:
Foundation
Character
Class
Sand and rock
Stable
Silt and some clay
Moderately reactive clay Reactive
Highly reactive clay
Extremely reactive clay
Sand
Material other than sand
Mine subsidence
Uncontrolled fill
Landslip
Soft
Collapsing soil
Table 8. Site Classes (AS2870-1986).

All site classifications for Victoria are based on one or more of the following:
a) Assumption of a soil type without any site investigation from a classification map or from well established local knowledge provided that soils are known to be consistent over large areas. The soil type and site conditions shall be checked by a site visit before construction.
b) Site investigation to identify soil profile using one or more boreholes or test pits in the site or a number distributed over a subdivision.
c) Site investigation using a penetrometer, for sand sites.
d) Site investigation including soil sampling and appropriate tests.

Where a Building Authority has designated a presumed site classification or simplified system based on a map of site classifications, this may be used but shall not preclude the adoption of a less severe classification if supported by a site investigation and a classification in accordance with the standard.

This standard is not referred to in the VBR at present, however it is intended to be incorporated if possible (E. Carroll, pers. comm., 1986).

An attempt to map the site classifications referred to in AS2870 is illustrated in Figure 20. This map is derived from a combination of soil depth, swell potential and soil genesis. The site classification method, then, is by soil profile identification (Appendix C, AS2870) rather than by surface movement calculation.

Site classification -
AUSTRALIAN STANDARD AS2870
engineering geological mapping
of MELTON, Vict.

Foundation	Character
Moderately reactive clay	Reactive

Highly reactive clay
Extremely resctive elay
Subaidence area or
uncontrolled fill
Figure 20.
SITE CLASSIfICATION
PROJ NO. GE 14 DATE: 5-JAN-88

4.2.1 Class P (problem) sites

The area described in Unpub. Rept. 1986/4 - the 'sinkhole plain' is the largest of the problem sites identified within the Melton development area. The most obvious problem for development of this site is the active subsidence. Roads, housing, and sewerage systems would be seriously damaged by sinkhole development. The unpredictability of the sinkholes makes the siting of any structures hazardous. It is likely however, that areas of the site could be found where the potential for subsidence would be lower.

The soil subsidence occurring in this area would classify the site as a class P (problem) site according to AS2870. The presence of deep basaltic clay classifies the site as "unstable" for strip and stump footings and "intermediate" for slabs or footing slabs according to the Victoria Building Regulations (VBR). The regulations set out the minimum dimensions for either type of footing, which are not condidered adequate for this site. The depth of highly expansive clay and the potential for sinkhole development create unusual foundation conditions which require special engineering design for footings.

Buildings founded on expansive soil need caretul attention paid to building design and maintenance, in order to nitigate or control structural damage. Properly engineered foundations, segmented interior design, flexible connections to utility lines, and carefully designed lot drainage and landscapinc are required for satisfactory building performance.

Selection of building sites in areas where the soil is thinnest and removal of all trees surrounding buildings would lessen the risk of subsidence occurring, although not entirely rule it out. Placement of the footings on the rock (by desigring pier and beam footings) would ensure that the building would not subside, even though the soil may. Chen (1975) warns that pier and beam design does not always work in expansive soils, since the swelling and shrinking can produce considerable lateral and frictional forces on the piers.

An alternative solution would be to replace the foundation soils with non-swelling granular soils. Chen (1975) suggezts at least 1.5 m under the footings and 3 m beyond the building line soil replacement will lessen the chances of building distress considerably since it would overcome the effects of the expansive soils and cushion the effect of any subsidence. The possibility of subsidence cccuring still remains, although the effects would be less dramatic on the surface due to the compensatory movement of the granular soil.

Other problem sites identified are very small areas where farm dams seen on aerial photographs taken in 1943 and 1967 have been infilled.

4.3 Sewerage

An investigation of the usefulness and limitations of various methods of treating or disposing of domestic waste waters was carried out by the Environment Protection Authority (EPA) and reported on in 1975 . The report found that reticulated sewerage is the only really satisfactory method of dealing with domestic waste water discharges on long-term basis. However, in non-sewered areas several alternatives were available for waste disposal (Table 9). For environmental reasons only the "all-waste" treatment systems are considered suitable, as the previous practice of sullage disposal by direct discharge to creeks or drains is no longer acceptable.

Of the all-waste disposal units the septic tank with soil absorption has some specific geological requirement. Although in principle, surface irrigation with effluent is possible, normal domestic waste disposal do not use this method for both aesthetic and health reasons. Nearly all septic tanks using soil absorption of effluent use absorption trenches. In the ground absorption process, the soil factors which determine the rate of absorption of water are:

- infiltrative capacity of the liquid soil interface
- percolative capacity of the soil itself
- effective soil particle size
- trench loading

The first two factors determine the rate at which liquid enters the soil and can percolate away, and therefore play the major part in absorption process. Treated effluent however is considerably different in composition to pure water, and for the case where a septic tank effluent is being applied the infiltration rate is always less than the percolation rate due to clogging of the interface with suspended matter and biological growths, as well as a swelling of hydrated soil particles and deflocculation by added sodium or potassium ions. (EPA, 1975a)

Measurement of infiltrative capacity is difficult and it is usual to measure percolation rates or soil permeability (hydraulic conductivity) instead. Both the Victorian Health Commission and the EPA have used percolation tests to assess infiltrative capacity. The EPA has developed a standard test to measure the percolation rate of soils in relation to septic effluent absorption (EPA, 1975b). This procedure is based on the of the U.S. Public Health Service, and simply entails excavating a standard hole in the ground, soaking the soil in the hole for a minimum time, and then measuring the percolation rate of the soil as a drop in water level in the hole over a standard time.

Research of three methods of measuring soil permeability (Winneberger, 1974) shows poor reproducibility when using the percolation test method. Past experience in performing many of these tests has led to a disregard for the usefulness of the test. The results vary markedly according to the soil fabric, season and site specific location.

```
WC only
    * Septic tank plus: soil absorption
    sand filter
    transpiration bed
    chlorinated discharge
* Incenerator systems
* Humus toilets
* Storage in holding tank - periodic removal
* Chemical stabilisation - storage and removal
* Cesspits
* Pan service
```


All Waste

```
* Septic tank plus: soil absorption
sand filter
transpiration bed
lagooning
chlorinated discharge
* Small treatment plant plus: chlorinated discharge lagooning transpiration bed soil absorption sand filter
Sullage Only
* Septic tank plus: soil absorption
* Soakage pit
```

Table 9. Current domestic waste water disposal methods.

The soil requirements for absorption of septic tank effluent are as follows:

- moderate to high permeability (above $10-5 \mathrm{~cm} / \mathrm{sec}$)
- percolation rate greater than $2.5 \mathrm{~cm} / \mathrm{hr}$.
- low clay content
- low shrink/swell potential
- not subject to flooding
- no shallow impermeable horizons
- ground water-table at least 1 m below the trench bottom (EPA , 1975c)

For the development area, it is intended that most of the dwellings will be conected to a reticulated sewerage system. However, in the low density areas, some septic tank systems may be installed. For these reasons no regional assessment has been made of suitability of effluent absorption. In general, clay soils are not very good because of their expansive nature and very low permeability.

The area in the north west corner (the 'sinkhole plain') presents a difficulty for sewage disposal. Because the site is isolated from the Melton City by a proposed regional cemetery, is was not intended by the ULA to service the site with reticulated sewerage.

Alternative sewage disposal would be limited to above ground methods (e.g. composting, chemical or incinerating toilets, "grey water" irrigation, etc.), since the permeability of the clay is too low to provide adequate effluent absorption. Even in areas where septic system absorption lines could be located in the gravel/sand/silt layer, the localised addition of moisture to the underlying expansive clay would cause excessive swell and distress in the sewerage system. Similarly, sand filters or other in-ground disposal would be ultimately unsatisfactory.

4.4 Roadmaking

In Victoria the common practice in roadmaking has been to use flexible pavements for most highway and suburban roads. The PCA have published guidelines for the design of flexible pavements which are used by road engineers in Victoria (CRB, 1980a).

In the process of arriving at a pavement thickness and composition it is necessary to consider many factors. These may be classified into five broad categories:

[^3]The conditions of the subgrade is the most relevant to the engineering geological mapping in the Melton development area. In general, the support provided by the subgrade is the most important factor in determining pavement design thickness, composition and performance (CRB, 198Ua). The subgrade should be prepared and compacted so that its long term bearing strength is as uniform and as high as possible. In situ strengths during construction may differ greatly from the strengths ultimately developed at the equilibrium moisture content.

The long term strength of the subgrade is governed by:

- the type of material
- the subgrade moisture regime
- the sensitivity of the subgrade to moisture changes

Of these factors, the last is of particular importance at Melton. The extensive expansive clay soils have the potential to appreciably change volume with changes in moisture. This swelling or shrinkage of expansive clays is rarely uniform and the resulting distortion can severely damage an otherwise sound pavement.

Volumetric changes can be minimised by:

1. Minimising changes in the moisture content, eg. compacting the subgrade at a moisture content close to the equilibrium moisture content, and maintaining it at this level until covered by the pavement.
2. Placing sufficient weight of material over the subgrade to counteract the swelling pressure.
3. Modifying the subgrade to reduce its sensitivity to moisture by the addition of a stabilising agent such as lime.

The RCA have extensively tested the Melton soils for the construction of the Western Freeway Melton By-pass and opted for lime stabilization as a suitable soil treatment. The addition of lime (approx. 4\%) to the subgrade material greatly improves the roadmaking properties.

The pavement thickness design procedure described by the RCA is based on an empirical reiationship between:

- the strength of the subgrade in terms of its CBR (section 3.11.3), and
- the pavement thickness required over the subgrade to carry the predicted traffic loading at the desired level of performance.

AFPENDIX I
SIMPLE KRIGING EXAMPLE
(Modified from Farrelly, 1985)

SIMPLE KRIGING EXAMPLE
Assuming isotropic and stationary semi-variances, all that is moduired to calculate the kriging weights is the semi-variogram point, area or volume being estimated. points with respect to the

Take the following area, with data points distributed as shown :

Given the semi-variogram for the whole area :

$$
\gamma(d) 20 \underbrace{\gamma(d)=18\left[\frac{3}{2 \times 200}-\frac{d}{2} \frac{d^{3}}{200^{3}}\right]+2 ;} \text { for } d \leqslant R
$$

The point χ_{0} is estimated using the weighted average :

$$
\begin{aligned}
& \quad \hat{\chi}_{0}=\lambda_{1} \chi_{1}+\lambda_{2} \chi_{2}+\lambda_{3} \chi_{3}+\lambda_{4} \chi_{4} \\
& \text { where } \quad \lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}=1
\end{aligned}
$$

In matrix form, the solution to the set of kriging equations is
written:

$$
\left[\begin{array}{c}
\lambda_{1} \\
\lambda_{1} \\
\lambda_{1} \\
\lambda_{1} \\
\mu
\end{array}\right]=\left[\begin{array}{lllll}
\gamma_{1,1} & \gamma_{1,2} & \gamma_{1,3} & \gamma_{1,4} & 1 \\
\gamma_{2,1} & \gamma_{2,2} & \gamma_{2,3} & \gamma_{2,4} & 1 \\
\gamma_{3,1} & \gamma_{3,2} & \gamma_{3,3} & \gamma_{3,4} & 1 \\
\gamma_{4,1} & \gamma_{4,2} & \gamma_{4,3} & \gamma_{4,4} & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right]^{-1} \times\left[\begin{array}{l}
\gamma_{0,1} \\
\gamma_{0,2} \\
\gamma_{0,3} \\
\gamma_{0,4} \\
1
\end{array}\right]
$$

where

$$
\begin{aligned}
& \gamma_{1,1}=\gamma_{\left(d_{1,1}\right)}=\gamma(0)=0 \\
& \gamma_{1,2}=\gamma\left(d_{1,2}\right)=\gamma(70 \cdot 7)=11.1 \\
& \gamma_{1,3}=\gamma_{\left(\alpha_{1,3}\right)}=\gamma(50)=8.6
\end{aligned}
$$

etc. etc.
The solution to the example is

Thus our estimate is :

$$
\chi_{0}=.51 \chi_{1}+.03 \chi_{2}+.09 \chi_{3}+.37 \chi_{4}+\epsilon
$$

with the variance of ϵ, the kriging variance, being :

$$
\sigma_{k}^{2}=\mu+\sum_{i=1}^{n} \lambda_{i} \gamma_{i, 0}=11.5
$$

This is a measure of estimation error, and the ability to derive
such a measure is onc of the advantages of kriging Another advantage is the automatic down-atages of kriging. Another direction in which we already nave ghting of samples in a effect' can be seen in our example information. This 'screen than χ_{3}, even though it is closer to χ_{0}. χ_{2} has a lower weighting

APPENDIX II

$+\quad+\quad+\quad+$
$+$ $+$ $+++\quad+$

$$
+\quad+
$$

$$
+\quad+
$$

$$
+
$$

$$
+
$$

$$
+\quad+\quad+
$$

$$
+
$$

T
号

$$
+\quad+\quad+
$$

$$
+
$$

$$
+
$$

$$
=+
$$

engineering geological mapping of melton, vict.			
	SOIL DEPTH	I SOPL	
PROJ NO.	- GE 14	DATE:	15

APPENDIX III
BUILDING REGULATIONS FOR FOOTINGS AND FOUNDATIONS EXTRACT FROM VBR (1983)

GROUP VI-STRUCTURAL PROVISIONS PART 32-FOUNDATIONS

32.1

FOUNDATIONS: ASSESSMENT OF ADEOUACY

32.2 The adequacy of foundations shall be based on approved-
(a) well established and relevant local knowledge and experience of foundution conditions in the vicinity of the proposed building; or
(b) tests on the foundation materials.

32.3

ALLOWABLE BEARING PRESSURES—GENERAL

32.4 The bearing pressure on the foundation of a building shall not exceed the values given in Regulation 32.5 unless-
(a) an investigation of the foundations has been conducted and the building surveyor is satisfied in the light of the report on that investigation, that higher bearing pressures are justified or
(b) an investigation of the site has been conducted under AS 1726 and the bearing pressures are based on the information obtained from that investigation.

ALLOWABLE BEARING PRESSURES

Application of Regulation

32.5 (1) This Regulation shall only apply where the class and description of the soil or rock adopted for the purposes of this Regulation and the allowable bearing pressures adopted for the purposes of this Regulation are stated on the plans submitted for a building approval.

Reference to Tables

(2) The allowable bearing pressures for use pursuant to this Regulation shall be those prescribed in-
(a) Table 325 A ;
(b) Table 32 5B; or
(c) Table 32 5C-
as required to be construcd in accordance with the Notes to those Tables.

Determination of soil description

(3) In determining an appropriate soil description for use pursuan to this Regulation, the designer shall take account of seasonal moisture conditions.

Pad or strip footings near boundaries

(4) Where any pad or strip footing is on or within 1 m of the boundary of the allotment other than a street alignment, the allowable bearing pressure shall be two-thirds of the value otherwise prescribed in this Regulation.

$$
\text { TABLE } 32 \text { 5A }
$$

FOOTINGS ON COHESIVE SOIL		
Description	Maximum Allowable Bearing Pressures for Footings at Ground Surface (kPa)	
	Strip Fontings	Pad Footings (Squareor Circular)
	(2)	(3)
(1)		
Very soft clay and		30
silt	20	60
Soflay and silt	40	110
Firme clay	95	210
Stiff clay	180	630
Very stiff clay	350	
Hardclay	520	

Notes:
A. Rectangular frotings with width to length proportions in the ratio $1: 5$ or greater shall be deemed to te strip footings
B. For rectangu lar footings with a width to length ratio between 1:1 and 1:5 the allowable bearing D essure may be interpolated between those prescribed for strip footings and pad footings.
C. Where a footing is located below ground surface the allowable bearing pressure may be increased by 5 kPa for each 300 mm in distance which the base of the footing is
below the ground surface.
D. (1) For the purposes of this Table the following interpretations shall apply:
(a) 'Very sof clay and very sof silt' means soil which may be readily penetrated to a depth of 100 mm by the clenched fist.
(b) 'Soft clay and soft silt' means soil which may be easily penetrated to a depth of 50 mm by the thumb.
(c) 'Firm clay' means soil which may with moderate effort be penetrated to a depth of 50 mm by the thumb

Part 32. Page 2
(d) 'Suff clay' means soil which may readily be indented by the thumb, but penetrated by the thumb only with great effort.
(c) 'Very stiff clay' means soil which may be readily indented by the thumbnail.
(f) 'Hard clay' means soil which may be indented by the thumbnail but only with great difficulty.
(2) For the purposes of these interpretations clay shall include silty or sandy clays.

TABLE 32 5B

FOOTINGS ON NON-COHESIVE SOILS			
Description	Allowable Bcaring Pressure in k.Pa for a Footing locatest at Ground Surfues (2)	Increase in Allowable Bearing Pressure in LPa for every 300 mm of Depth of Base of Footing Bitow Ground Surfiux (3)	Haximum Allowable Bearing Pressure in hPa Under any Conditions (4)
Loose sand or gravel	50w	15	100
Medium sand or gravel	150w	40	250
Dense sand or gravel	350w	100	550
Very dense sand or gravel	600w	150	700

Notes:
A For the purpose of this Table, u is the least plan dimension of the footing in melies.
B. If, in the opinion of the building surveyor, the water table is likely to rise to a level the distance of shich below the base of the footing is not more than w. the allowable bearing pressute and maximum allowable bearing pressure shall be one half of that otherwise prescribed.
C. For the purposes of this Table, the following interpretations shall apply.
(a) 'Loose sand or gravel' means sand deposits readth removable by shovelling only and into which a sharp pointed wooden posi 50 mm square can easily be driven with a hammer nol exceeding 5 kg
(b) 'Medium sand or gravel' means sand or gravel deposits removable by vigorous shovelling and into which a sharp pointed wooden posi 50 mm square can be driven with a hammer not exceeding 5 kg with some difficuliy
(c) "Dense sand or gravel' means sand or gravel deposits requiring picking for trmoval, and offering high resistance to penetration by excavating tools.
(d) 'Very dense sand or gravel' means gravel deposits requiring hard picking for removal, and offering hard fesistance to disturbance by excavating tools.

TABLE 325 C
FOOTINGS ON ROCK

Dewription(1)	Afaximum Allowalle Rearing Pressures for Rock Foundations in Vanous Conditions of H cathering in kPa		
	Highly. Wrathered (2)	Moderately Wcathered (3)	Ficch to Slightly, Heathered (4)
Soft limestone and	100 10400		
Sandstonc, mudstone and similar	100 to 400	300 to 1000	800 to 1500
Slate, schist and similar	200 to 600	500 to 1500	1200 to 2000
metamorphic rocks Basalt, granite and	200 to 600	600 to 2000	1500 to 3000
similar igncous rocks	200 to 600	500 to 2000	1500 to 4500

Notes:
A. (a) The lower end of each range shall be used for rock foundations of the calegory oo which the range applies and which are highly jointed or contain obvious defects.
(l.) The upper end of each range shall be used for massive and consistent rock foundations of the category to which the range applies.
R. A bearing pressure greater than 600 kPa shall not be imposed by a footing resting (a) establishes the unless a qualified engineer-
(a) establishes the condition of the basalt rock foundation to a depth of not less than $1 / 2$ times the width or diameter of the footings, and
(h) decides in accordance with good enginecring practice and the condition of the hasalt rock foundation that it is safe to rest the footing on that foundation.
C. For the purposes of this Table:
(a) 'Highly Weathered Rock' means rock of predominantly earthy colours (particularly yellows, reds and browns) with numerous clay seams and pieces of which can generally be broken by hand.
(b) 'Moderately Weathered Rock' means rock showing some earthy colour predominantly surrounding the joints with some clay seams and pieces of which can generally be broken by hand:
(c) 'Fresh to Slightly Weathered Rock' means rock predominantly of a mineral colour or lustre with only minor discolouration adjacent to joints and pieces of which can only be broken with difficulty using hand tools.
D. Where rock is in an extremely weathered form so that, although rock texture and appearance are mainly preserved, the rock substance has the strength rock texture and and may be readily disintegrated by gentle agitation in water it shall be derees of soil soil for the purposes of this Regulation and classified in accordance with deened to be contained in Tables 325 A and 32 5B

GROUP VI-STRUCTURAL PROVISIONS PART 33-FOOTINGS NOT ON PILING OR CAISSONS

PROVISION OF FOOTINGS

33. 1 Suitable footings shall be provided where necessary to reduce the 'atensity of the pressure of the building on the foumdutions.

DESIGN OF FOOTINGS

33.2 Footings, including slab-on-ground footings, shall be designed and constructed so that any relative movements of separate footings and of different parts of any one footing under loading, or of a footing and any other element of the substructure will not impair the stability of or cause significant structural damage to the superstitucture.

DEEMED TO COMPIY

Scope

33.3 (1) This Regulation shall apply to concrete strip or pad footings where-
(a) the building does not contain more than 4 storeys;
(b) the area of any storey of the building is not greater than $600 \mathrm{~m}^{2}$; and
(c) the bearing pressure exerted by the footing does not exceed the value prescribed in Regulation 32.4.
Construction and proportions of footings designed by prescribed allowable bearing pressure
(2) A footing designed and constructed in accordance with this Regulation shall be deemed to comply with Regulation 33.2 if it-
(a) is of reinforced concrete constritted having a compressive strength at 28 days of not less than 20 MPa , as determined in accordance with AS 1480;
(b) has a depth of not less than-
(i) the horizontal projection of the footing at right angles to the face of the wall or the column it supports (as illustrated in Figure 33 3); or
(ii) $200 \mathrm{~mm}-$
whichever is the greater;

Horizontal Projection of footing
FIGURE 33
(c) in the case of a pad footing, contains not less than 0.15 per ceni of the cross-sectional area of the footing, as designed, as reinforcement in cach direction near the bottom face of the footing, with a minimum cover of 50 mm :
(d) in the case of a strip footing, contains not less than $0 \cdot 15$ per cent of the cross sectional area of the footing as designed as longitudinal reinforcement with a minimum cover of 50 mm , half of which shall be placed in the top third and half in the bottom third of the footing: and
(c) has reinforcement in strip footings and pad footings lapped for continuity-
(i) at splices-for a distance of not less than 500 mm ;
(ii) at T intersections-for the full width of the layer:
(iii) at corners where fabric strips are used as reinforcement-for the full width of the fabric layer: and
(iv) at corners where bars are used as reinforcement-by a bent lap bar of 500 mm each leg. placed in each layer of reinforcement near the outer face of the corner.

DFEMED TO COMPLY

Application of Regulation

33.4 (i) Any footing of a Class I building or a building of another class which has a uniformly distributed live load not exceeding 3 kPa when calculated in accordance with AS 1170 which is constructed in accordance with the relevant provisions of this Regulation and

Part 33. Page 2

Regulations. 33.5 to 33.9 shall be deemed to comply with the requirements of Regulation 33.2 except where-
(a) by reason of-
(i) the nature of the foundation; or
(ii) the design of the building; or
(iii) any other relevant considerationsthe building surveyor is of the opinion that any such footing would not be adequate in the partict lar case; or
(b) the building -
(i) contains more than 2 storeys; or
(ii) has a wall, which, excluding any gable, exceeds 7.2 m in height; or
(iii) will contain a concrete floor other than a slab-onground.

Concrete strength
(2) Concrete used in footings shall have a compressive strength at 28 days of not less than 20 MPa , determined in accordance with AS 1480.

Foundation classification

(3) The classification of the foundation of any site on which footings are to be constructed shall be in accordance with the "Classification of Expansive Behaviour of Melbourne Soils for Domestic Construction" published by CSIRO and AEBIRA.

Areas not covered by publication

(4) In areas outside those shown in Figure 3 of the publication referred to in sub-regulation (3) the site on which footings are proposed to be constructed shall be similarly classified by adopting, where practicable, the principles stated in that publication and taking into account experience or knowledge of local or traditional building construction practices.

Drawings to include foundation classification

(5) The drawings referred to in Regulation 8.2 (2) shall include the foundation classification adopted pursuant to this Regulation and shall be confirmed to the satisfaction of the bullding survegor on the site on which the footings are proposed to be constructed.

'FOOTINGS FOR STUMPS

General requirements

33.5 (1) Every footing for stumps shall comply with the following:
(a) The size of concrete footings for stumps shall be in accordance with AS 1684.
(h) The bearing areas of footings for stumps which support a wall sheathed with cement-sand facing tiles, shall be double those prescribed for a timber-framed wall in AS 1684.
(c) The footings shall be founded at a depth of-
(i) in the case of sites classified as stable in accordance with Regulation 33.3, not less than 450 mm ; or
(ii) in the case of sites classified as intermediate in accordance with Regulation 33.3, not less than 700 mm ; or
(iii) in the case of sites classified as unstable in accordance with Regulation 33.3 , not less than 1 m .

Concession

(2) Notwithstanding paragraph (c) of sub-regulation (1), the building surveyor may permit the footings for stumps to be founded at a depth of less than 450 mm if he is satisfied by reason of experience or local knowledge that such a depth would be adequate for the structural stability of the building in the case of-
(i) the re-stumping of or alterations to an existing building;
(ii) rock foundations; or
(iii) a building in which walls of stud-framed and sheeted construction are supported on stumps.

Excavations

(3) Excavations for footings for stumps shall be-
(a) properly backfilled with approved material; and
(h) compacted in an approved manner.

STRIP FOOTINGS

Reinforcement

33.6 (1) Reinforcement in strip footings shall-
(a) be equally distributed in two layers, one near the top and one near the bottom of the footing:
(b) have a concrete cover of not less than 50 mm at any part and
(c) be laid continuously, each layer being lapped-
(i) at intersections-for its full width;
(ii) at splices-for not less than 500 mm ;
(iii) at corners where fabric strips are used as reinforcement-for the full width of the fabric layer;
(iv) at comers where bars are used as reinforcement-by a bent lap bar of 500 mm each leg, placed in each layer of reinforcement near the outer face of the corner; and
(v) at steppings, as shown in Figure 336

Design generally

(2) Strip footings constructed of concrete shall-
(a) have a width and depth in accordance with Table 33.6 ;
(b) if stepping is necessary, comply with one or more of the methods shown in Figure 336 and have level bottoms between steppings;
(c) be reinforced in accordance with Table 33.6 and Figure 33 6; and
(d) be founded on soil or rock having an allowable bearing pressure of not less than 100 kPa .

Reduced footing depth permissible

(3) Where a strip footing designed and constructed pursuant to this Regulation is to rest wholly or partly on a floater or rock outcrop, the depth of the strip footing in the vicinity of the floater or rock outcrop may, subject to sub-regulation (4) be reduced to not less than twothirds of the depth otherwise prescribed by this Regulation.

Reinforcement in reduced footing depth

(4) Where the depth of a strip footing is reduced pursuant to sub regulation (3), the reinforcement in the section of the strip footing of reduced depth-
(a) shall be double the amount of that prescribed by Table 33 6; and
(b) shall extend at least 500 mm beyond the section of strip footing of reduced depth

TABLE 33 。
MINIMUM DIMENSIONS AND REINFCRCEMENT FOR STRIP FOOTINGS

1.unduanm theutivathem	$\begin{aligned} & \text { Numbrer } \\ & \text { sumer } \end{aligned}$	Fiosting			AlicrnativeRenfowrment	
		Wuth	Dowh			Number of Afoin Hive のftyTMa
		"(mm)	$n(\mathrm{~mm})$	1% (mm)	$\begin{aligned} & \text { oflly } \\ & \text { at Ton } \end{aligned}$	Rothom
(1)	(2)	(3)	(4)	(5)	and Batum	
				(3)	(6)	(7)

Sable		${ }_{3}^{300}$	375	480	2	3
Intermodiar		300	323	\%00	3	${ }_{6}$
Unuathe		3m 3	878	${ }_{780}^{780}$	3	

CAVITY OR DOUBLE LEAF MASONRY WALLS

Static	$\begin{aligned} & \text { One } \\ & \text { Two } \end{aligned}$	350 450	375 37	450 450	$\frac{2}{3}$	${ }_{6}{ }^{*}$
Intermediate	$\begin{aligned} & \text { One } \\ & \mathrm{Tu}_{n} \end{aligned}$	350 450	525 525	${ }_{600}^{600}$	3	6
Wnesatic	$\begin{gathered} \text { One } \\ \text { Two } \end{gathered}$	350 450	675	750 750	3	$6_{8}{ }^{\circ}$

-Reinforcement is to be provided in two equal layers.

STRIP FOOTING
IILUSTRATION TO TABLE 336

METHOD A

SLAB-ON-GROUND

Reinforcement in the slab-on-ground beams
33.7 (1) Reinforecment in the beams in slab-on-ground shall(a) be placed near the bottom of each beam:
(h) have a concrete cover of not less than 50 mm at any part; and
(c) be lapped-
(i) at intersections-for its full width:
(ii) at splices-for not less than 500 mm ;
(iii) at corners where fabric strips are used as reinforcement-for the full width of the fabric layer;
(iv) at corners where bars are used as reinforcement-by hent lap bar of 500 mm each leg. placed in each layer of reinforcement near the outer face of the corner; and
(v) at steppings-as shown in Figure 33.6

Reinforcement fabric in slab-on-ground
(2) Reinforcement fabric in slab-on-ground shall-
(a) be placed in the upper half of the slab, with a concrete cover of not less than 25 mm at any part:
(h) be lapped for a distance of not less than 225 mm ; and
(c) be supported by bar chairs at spacings of not more than 1.2 m in either direction

Requirements generall

(3) Every slab-on-ground shall comply with the following:
(a) Top-soil containing significant amounts of organic matter shall be removed from the area on which the slab is to rest.
(h) Fdge beams of the slab shall be founded on soil or rock having an allowable bearing pressure of not less than 100 kPa .
(c) The slab shall be founded on soil or rock having an allowable bearing pressure of not less than 30 kPa .
(d) The slab shall be provided with a vapour barrier which shail-
(i) consist of a sheet of polyethylene not less than 0.2 mm in thickness:
(ii) be placed beneath the slab so that the bottom surface of the slab is entirely underlaid;
(iii) be continued around the edge beams to at least ground level or to the bottom of the edge recess, whichever is the lower;
(iv) be lapped at all joints for a distance of not less than 200 mm ; and
(v) be taped around pipes which penctrate the slab.
(e) The dimensions and reinforecment of the edge beams shall be not less than those prescribed in Table 33.7 A and as illustrated in Figure 33 7A.
(f) Edge recesses shall be provided for a masonry cavity wall or masonry veneer construction and shall-
(i) have a depth of not less than 50 mm and any part of the edge beam below any such recess shall have a depth of not less than 150 mm ; and
(ii) be constructed in the manner illustrated in Figure 33.7A.

FIGURE 33 7A
TABLE 33 7a
MINIMUM DIMENSIONS AND REINFORCEMENT OF EDGE BEAMS

$\begin{aligned} & \text { Feunfution } \\ & \text { Clisin futhon } \\ & \text { ind Buthing } \\ & \text { Hosht } \end{aligned}$	$\begin{aligned} & \text { Size }(H \times D) \\ & \text { in mm } \end{aligned}$	Alternuthe Botom Renforiement	
			$\begin{gathered} \text { Sumber of } \\ \text { Main Hires } \\ \text { of PSTM } \\ \text { Fabric } \end{gathered}$
(1)	(2)	(3)	(4)
Stable -one storey - twastareys	$\begin{aligned} & 300 \times 300 \\ & 400 \times 4+0 \end{aligned}$	3	4
Intermedate -une sturey -inustareys	$\begin{aligned} & 300 \times 400 \\ & 40 \times \times+\infty \end{aligned}$	3	8_{8}°

TABLE 33 7a-continucd

Foundation Clossification and Building Height	$\text { Size }\left(W^{\prime} \times D\right)$in mm	Alternative Bottom Reinforcement	
		Number of C12. S16 er Y12 Bars or Main Hires of FIITM Fabric	Number of Main Wire of F8TA Fahric
(1)	(2)	(3)	(4)
Unstahle			
-one storcy	300×600	3	
-two storeys	400×600	4	8°

- Reinforcement is to be provided in two equal layers.
(g) On completion of the building the top surface of the slab shall be at a height above the adjoining ground level of-
(i) 75 mm , in the case of a slab located adjacent to a drained and paved area;
(ii) 100 mm , in the case of a slab located on a sandy, well drained site, or
(iii) 150 mm , in any other case.
(h) Stiffening beams shall-
(i) be constructed in accordance with the dimensions prescribed in Table 33.7 B and in the manner illustrated in Figure 33.7 B ;
(ii) be reinforced in accordance with the provisions of Table 33.7 B ; and
(iii) be founded on soil or rock having an allowable bearing pressure of not less than 30 kPa ;

FGGURE 33 7 ${ }^{3}$

TABLE 3378
MINIMUM SIZE, SPACING AND REINFORCEMENT OF STIFFENING BEAMS

terondutran (havitiation		Hforflatice Hustan Revnforiemint			
(1)	(2)	(3)	(4)	(5)	(0)
$\underline{\text { Inturmesiatic }}$	30.0 .400	3	c.	4.	3.5
Unsabile	$3(x)=000$	3	0	*	3

- Reinforcement is to be provided in two equal lasers
(i) A support shall be provided under any internal wall in the manner prescribed by Part 1 of Table 33 7C if the wall is not located within 300 mm of the centre-line of a stiffening beam.
(j) A beam providing support for an internal wall in accordance with Part I of Table 33 7c shall be-.
(i) constructed in accordance with Part 2 of Table 33.7B for stiffening beams and in the manner illustrated in Figure $33 \quad 73$
(ii) if the wall is a loadbearing wall, be founded on soil or rock having an allowable bearing pressure of not less than 100 kPa ; and
(iii) if the wall is a non-loadbearing wall, be founded on soil or rock having an allowable bearing pressure of not less than 30 kPa .

$$
\text { TABLE } 337 \mathrm{C}
$$

PART 1--SUPPORTS FOR VARIOUS TYPES OF INTERNAL WALL

PARTI-SUPPORTS FOR VARIOUS TYPES OF INTERNAL WALL				
CONSTRLCTION				

PART 2- MINIMUM SIZE AND REINFORCEMENT OF INIERNAL WALL

Toundation Clarsification	$\begin{aligned} & \text { Beam Size } \\ & (\mathrm{W} \times D) \end{aligned}$	Ahernatur Bottom Reinforcement	
		Number of C12, 516 or Y/2 Bars or Main Hites of FIITM Fatric (3)	Number of Main Hires of TKTMf Fahric (4)
Statie	300×300	2	
Intermediate	300×400	3	6.
Unstable	300×600	3	$6 *$

-Reinforcement is to be provided in two equal layers
(k) additional slab reinforcement providing support for an internal wall in accordance with Part 1 of Table 33.7 C shall-
(i) be not less than 800 mm wide:
(ii) be positioned centrally under the wall in the lower part of the slab with a concrete cover of not less than 30 mm ;
(iii) be placed in the manner illustrated in Figure 33.7 C : and
(iv) comply with the provisions of paragraph (l):

(i) every slab shall-
(i) in the case of a slab resting on soil classified in accordance with Regulation $33 \quad 3$ as stable, be reinforced with F72 mesh or bars of equivalent strength: or
(ii) in any other case, be reinforced with F82 mesh or bars of equivalent strength;
(m) A slabshall be not less than 100 mm thick.
(n) Pipes providing heat to a slab shall not be embedded in a slab less than 125 mm thick.

Part 33. Page 12
(o) Where pipes are to be eml dded or recesses provided in the slab, the slab shall be thisesened in an approved manner to ensure that there is no loss of strength.

Reduced footing depth permissible

(4) Where a beam of a slab-on-ground, designed and constructed pursuant to this Regulation, is to rest wholly or partly on a floater or rock outcrop, the depth of the beam in the vicinity of the floater or rock outcrop may, subject to sub-regulation (5), be reduced to not less rock two-thirds of the depth otherwise preseribed by this Regulation.
Reinforcement in reduced footing depth
(5) Where the depth of a beam is reduced pursuant to sub-regulation (4), the reinforcement in the section of the beam of reduced depth-
(a) hall be double the amount of that prescribed by this Regulation; and
(b) shall extend at least 500 mm beyond the section of strip footing or beam of reduced depth.

FOOIING SLABS

33.8 A footing slab system designed and constructed pursuant to this Regulation shall comply with the following:
(a) Except where by reason of experience or local knowledge the building surveyor permits otherwise, the footing slab shall be founded on a site classified in accordance with Regulation 333 as stable.
(b) The configuration of the system shall conform with-
(i) one of the methods illustrated in Figure 33 8; or
(ii) any other meihod not less effective than the methods so illustrated;

FGGURE 338

(c) The footing part of the system shall comply with the provisions of Regulation 33.6 as if it were a strip footing.
(d) The slab part of the system shall comply with the provisions of Regulation 33.7 (3) (other than paragraphs (b), (d) (iii), (c) and (f)) as if it were a slab-on-ground.
(c) Where, in the design and construction of a footing slab system, filling is restrained by an external wall and the filling is greater than 600 mm in depth, the external wall shall be designed by a qualified engineer and constructed in accordance with that design.

Part 33. Page 13
S.R. $273 \quad \square \longmapsto \square-53.9$

FOOTINGS ADJOINING BOUNDARIES: PERMISSIBLE
PROJECTIONS
PROJECTIONS
33.9 Notwithstanding anything in Part 15, a footing may-
(a) support a party wall; and
(b) extend beyond the boundaries of a street alignment-
(i) to a distance of not more than 300 nm where the highest projecting part of the footing is at a depth of not less than 450 mm but is less than 3 m below the ground level; or
(ii) to a distance of not more than 1 m where the highest projecting part of the footing is at a depth of 3 m or more below the ground level.

SECTION 2. SITE CLASSIFICATION

2.1 DESIGNATION. Site classes siall be designated as follows:

Foundation	Character	Class
Sand and rock Silt and some clay	Stable	A
Moderately reactive clay Highly reactive clay Extremely reactive clay	Reactive	M
Sand Material other than sand	Controlled fill	A
Mine subsidence Uncontrolled fill Landslip Soft Collapsing soils	Problem	P

2.2 CLASSIFICATION PROCEDURE. All site classifications shall be based on one or more of the following:
(a) Assumption of soil type without any site investigation from a classification map or from well established local knowledge provided that soils are known to be consistent over large areas. The soil type and site conditions shall be checked by a site visit before construction.
(b) Site investigation to identify soil profile using one or more borcholes or test pits in the site or a number distributed over a subdivision.
(c) Site investigation using a penetrometer, for sand sites.
(d) Site investigation including soil sampling and appropriate tests.
(e) Clause 7.2 for South Australia.

Where the Building Authority has designated a presumed site classification or simplified system based on a map of site classifications, this may be used but shall not preclude the adoption of a less severe classification if supported by a site investigation and a classification in accordance with this Section.

2.3 STABLE ANI REACTIVE SITES.

2.3.1 Sand or rock site. Sand sites (to depths in excess of the depths of influence as defined in Appendix D or to rock) or rock sites, as defined in the standard, shall be classified as Class Λ.
2.3.2 Silt sites. Silt sites as defined in the standard or mixtures of sand and silt (to depths of influence as defined in Appendix D or to rock) shall be classified as Class S .
2.3.3 Clay sites. In addition to the general requirements of Clause 2.2, the procedure for the classification of a clay site shall include one or more of the following methods:
(a) Visual assessment of the site and interpretation of knowledge of existing masonry house walls on light strip footings which have existed for not less than 15 years in a similar soil assessed in accordance with Table 2.1.
(b) Identification of the soil profile and a classification in accordance with Appendix C or from established data on the performance of the soil profile.
(c) Computation of the predicted surface movement, y_{s}, in accordance with Appendix D, with the following limits:

Surface Movement	Class
$y_{\mathrm{s}} \leqslant 20 \mathrm{~mm}$	S
20 mm	$<y_{\mathrm{s}} \leqslant 40 \mathrm{~mm}$
40 mm	$<y_{\mathrm{s}} \leqslant 70 \mathrm{~mm}$
y_{s}	$>70 \mathrm{~mm}$

2.3.4 Reduction of reactive site classification. The effect of the treatments below may be taken into account to improve the site classification:
(a) Removal and replacement of reactive clay with a non-reactive material and protection of any remaining reactive clay from moisture changes; or
(b) Covering the site with a layer of compacted stable material preferably well in advance of construction.
2.3.5 Soft foundations. Soft foundations are classified as Class P where the allowable bearing pressure at foundation level is less than the following values as appropriate:
(a) Under strip or pad footings $\ldots \ldots . .100 \mathrm{kPa}$.
(b) Under beams and slab panels for all slabs, except that 100 kPa is required under the edge footing of footing slabs without ties 50 kPa .
Allowable bearing pressures shall be assessed in accordance with Appendix B.

NOTE: Inadequate allowatile beating pressure is not common except for silt sites.

TABLE 2.1
SIMPIE CLASSIFICATION OF CLAY SITES
(1)amage categories are given in Appendix A)

Characteristic performance of masonry (veneer or fuil) house on light strip footings	Clussification of site
Rate Catcgory 0 or 1 damage	S
Often Caregory 1 damage but rarely Category 2 damage. Category 3 damage is very rare even in extreme environmental conditions. (The site may show surface cracking in dey periods.)	M
Often Category 1 or 2 damage with oceasional examples of Category 3 damage or more severe. (Ground surface cracking is common it dry periods.)	11
Offen Category 3 or more severe and area is usually well known for damage to houses and structures. (Deep ground surface cracking occurs in dry prells.)	E

2.4 CONTROLLED FILL. SITES.

2.4.1 Controlled sand fill on sand sites. Controlled sand fill over sand site may be classified as a Class A site.
2.4.2 Shallow controlled fill. The effect of controlled fill up to 800 mm deep for sands and gravels and up to 450 mm deep for clay may be disregarded in the site classification
2.4.3 Other controlled fill sites. Other controlled fill sites may be classified as Class S sites provided that the settlement and reactivity of both the fill and the underlying natural soil complies with Clause 2.3.3(c).
2.5 PROBLEM SITES. Where the site includes mine subsidence, uncontrolled fill, landslip conditions or soft soil (see Clause 2.3.5), the site shall be classified as a problem site (Class P) and a footing system shall be designed in accordance with Section 5 .

APPENDIX C

SITE CLASSIFICATION BY SOIL PROFILE IDENTIFICATION

In some areas, where sufficient data has been established, an assessment of the reactivity of a clay profile may be associated with the descriptions in Tables C1, C2 and C3 provided that the clay on the site is identified as belonging to the profile described in the table. In neighbouring regions, the table may be used if soil types and climates are similar.
Where a range of classifications is given in the tables generally, the typical values should be used. A higher or lower classification may be required if the moisture conditions or soil profile on the site differ markedly from those normally expected. NOTES:

1. Depth of elay layer refers to the thickners of the clay in the profile. Shallow may be taken to mean less than 0.6 m depth of reactive clay.
2. The tables can only be used in conjunction with a site investigation where variable soit conditions are expected such as Adelaide. Where the soils are consistent, such as Melboun ne, geological or pedological maps may he used but the soil type should be ehecked by a site visit before construction
3. Only a limited mumber of profiles are included. If the soil profile is not listed in the tabte then some alfernarive classification procedure should be used.
4. Where a range is given the classification may be based on the depth of elay, the depth of the water table, the drainage of the site and a visual assessment of the reactivity of the soil.
5. The soil type notation in Table (2 is taken from Bulletin 46 ' Geological Survey of South Australia' A classification from the table shall not be based solely on the maps given in that report on soil rypes. The Category E: has been introduced primarily for those profiles which represent a transition. from highly to extremely reactive.

TABLE CI
Classification based on location and TYPICAI. PROFILE-VICTORIA

Examples	Classification
Acthourne and District	
$\leqslant 0.6 \mathrm{mdepth}$ of clay layer	M
$>06 \mathrm{in} \mathrm{depth}$ of clay layer	H
Non-basalic clays- (Inchding silurian and devonian residual days and guaternary altuvial clays)	
$\leqslant 06 \mathrm{~m}$ depth of clay layer	S
$>0.6 \mathrm{mi}$ depth of clay layer	M
Tertiary sediments	
$\geqslant 1 \mathrm{~m}$ sand over clay	\wedge
<1 m sand over clay, assess on the basis of depth of clay layes-	
$\leqslant 0.6 \mathrm{~m}$	
$>0.6 \mathrm{~m}$	M
Westernpout	
Alluvial clays	S \% 11
Horsham and district	
Girey brown cracking clays	11 ta
Ceclonk	
Baxaltic clays -	
$\leqslant 0.6 \mathrm{ml} \mathrm{depth}$	M
30.6 mm depth	11
Waturn Ponds formation	$\mathrm{M} \text { to } \mathrm{E}$
Tertiary sediments	S to M
Phallyp Istand	
Basaltic clays	
Allavial clays	M
Shepparton and Distriat	
Quaternary alluvial ciay	S 10 il

NOTE: The reactivity of the tertiary and silurian clays is variable, and some areas of high reactivity have been identified. Whalst the above clasifications have generally been shown as satisfactory, paticularly when combined with the requirements of Appendix A , if testing is ruil catried out, local experience should be considered when classilying a site

Ceological Survey of Victoria

ABSTRACT

An engineering geological mapping program has been conducted to provide essential geological information for use by planners and engineers working in the Melton Development Area, Victoria.

A review of past and current examples of thematic mapping for land use purposes was initially conducted. A data base of over 800 sampled locations was collated from previous work, and supplemented by additional drilling and testing in areas where little was known of the geological materials. This information was compiled using available computer facilities and combined with traditional field mapping methods. A map folio presenting individual aspects of the engineering geology was produced.

Large areas of expansive soil have been identified and mapped, and an area affected by soil subsidence was examined in detail Statistical methods (block kriging) have been used to determine the thickness of soil in the map area. Assesments of the suitability for urban development have been made.

Computer draughting was used to produce the maps, providing the ability for rapid future revision.

This report, which is one of seven unpublished reports on the map area, describes the engineering geology.

[^4]
CONTENTS

Page
INTRODUC'IION i
ENGINEERING GEOLOGY
1 Isopleth Mapping of Soil Thickness 1
1.1 Numeric surfaces
1
1
1.2 Interpolation techniques 2
1.3 Kriging
1.3 Kriging 3
1.3.1 Variograms
3
3
1.3.2 Simple kriging 5
1.3.3 Block kriging 6
1.3.4 Universal kriging 7
1.4 Soil thickness mapping - Definitions and parameters
1.4 Soil thickness mapping - Definitions and parameters 8 8
1.5 Numeric surface computations 9
2.5.1 Variogram computation
11
11
1.5 .2 Kriging
11
11
1.6 Validity checking
1.6 Validity checking
15
15
1.7 Numeric surface representation 16
1.8 Geological interpretation
16
16
1.9 Geotechnical interpretation 20
1.10 Further work
20
20
2 Groundwater 20
2.1 Water quality
2.1 Water quality
22
22
3 Engineering Properties of the Soil 27
4 Suitability for Development
31
31
4.1 Past assessments 31
4.2 Building foundations
34
34
4.2.1 Class P (problem) sites
43
43
4.3 Sewerage 44
4.4 Roadmaking 46
PIGURES
1 Theoretical variograms. 42 Distribution of soil depth data set.
3 Variogram of soil depth data set. 10
4 Directional variograms of soil depth data set. 12
5 Spherical model fitted to soil depth variogram. 13
6 Shade colour plot of soil depth values. 14
7 Soil depth isopleths. 17
8 Confidence values of soil depth. 18
9 Standing groundwater level. 19
10 Potentiometric surface of groundwater. 23 23
11 Stiff diagrams showing water quality. 24 26 26
12 Soil test data distribution
12 Soil test data distribution
13 Several possible individual-value simple character scales.14 Several possible individual-value compoundcharacter scales.
15 Chernoff face. 29
16 Flag map of liquid limit value. 30
17 Soil depth isopleths and liquid limit values. 32
18 SCA land units. 33
19 Soil classification map. 35
20 Site classification. 3942

TABLES

1 Soil depth data quality.
9
9
3 Groundwater quality. 21 21
4 Limits for total soluble salts and magnesium in 25drinking water of livestock.
5 Description of facial features and ranges. 26
6 SCA Land Units - Development limitations. 30
7 Soil classification table. 36
8 Site classes. 40
9 Current domestic waste water disposal methods. 41
APPENDICES
APPENDIX I Simple kriging example.APPENDIX IIAPPENDIX IIICheck plots for soil depth.Building. regulations for footings and foundations.Site classification method.

ACKNOWLEDGEMENTS

The assistance of the following organisations (and people) is gratefully acknowledged:

Engineering Computer Services Pty Ltd (P. Hillsden)
Road Construction Authority (T. Flintoff)
Kinhill-Rofe Pty Ltd (J. Brewer)
Farley \& Lewers Pty Ltd (M. Cameron)
Department of Agriculture and Rural Affairs (J. Maher, J. Martin) Land Protection Service (D. Howe, L. White)
State Chemistry Laboratories iP.' Briner)
Public Works Department (J. Kip)
CRA Exploration Itd (T. Dixon)
Urban Land Authority (H. Bartlett)
Health Commission of Victoria (P. Quaill)
Shire of Melton (L. Merrit)
Railway Construction Board (J. Cooney)
State Electricity Commission (W. Regan)
Dandenong Valley Authority (J. Crouch)
\qquad

LIST af AbBreviations used in reporting the Melton Engineering Geology Mapping project.

Abbreviation	Definition
AASHO	American Association of stata Highway offici
abbira	Australian Engineering and Building Industry Researeh as
AHD	Australian Height Datum
AMg	Australian Metric Grid
AS1276	Australian Standard AS1275 - SAA Site Investigation code
AS1289	Australian Standard Asi289 - Methods of Testing Soils for Engineering purposes
AS2870	Australian standard As2870 - Residential Slabs and Footings
CAD	Computer aided Drafting/Design
CBD	Central Business District
CBR	California Bearing Ratio
CRB	Country Roads Board
Csiro	Commenwealth Scientific and Industrial Research or
DITR	Department of Industry, Technology and Resources
doe	Department oif environment
DVA	Dandenong Valley Authority
ECS	Engineering Computer Services pty. Ltd.
EDP	Electronic Datal Processing
E\&L	Environment Protection Authority
FAO	Food and Agriculture organisation
F's	Free Swell
geosis	Geoscience Spatial Information system
GLe	Genesis-Lithology-Qualifier
gsv	Geological survey of Victoria
taeg	International Association of Engineering Geology
IGS	Institute of Geological sciences
LL	Liquid Limit ,
LPS	Land Protection Service
LS	Linear Shrinkage
Mmew	Melbourne Metropolitan Board of Works
MPE	Ministry for flanning and Environment
MSA	Melton Sewage Authority
MSICC MURL	Melton - Sunbury Interim Co-ordinating Committee
OGS	Melbourne Underground Rail Loop
PL	plastic Limit.
PI	Plasticity Index
RCA	Road Construction Authority
SAA	Standards Association of Australia
SCA	Soil Conservation Authority
TDS	Soil Conservation Service - United States Department of Agriculture Total Dissolved solids
UBR	Uniform Building Regulations
ULA	Urban Land Authority
USGS	United States Geological survey
VBR	Victorian building Regulations
WHO	Forld Health organisation
XRD	X-Ray Diffraction

INTRODUCTION

The City of Melton is located on the Western Highway 39 km WNW of Melbourne and was chosen by the Victorian Government for satellite township development in 1973.

The Melton Engineering Geological Mapping Project commenced in March 1983, as part of an ongoing mapping scheme conducted by the Geological Survey of Victoria (GSV), now a branch of the Department of Industry, Technology, and Resources (DITR). The project aims at the production of a map (or maps) depicting relevant geological features and properties in a useful manner for engineers and planners working in the Melton Development Area.

An engineering geological map is a thematic map which provides a generalized representation of all, those components of a geological environment of significance in land-use planning, and in design, construction and maintenance as applied to civil engineering.
A 'state-of-the-art' review of mapping methods for land-use planning was conducted to examine the past and present progress in a broad context. In particular, medium-scale engineering and weriromental mapping methods, and their map presentation formats, were examined.

A review of readily accessible data highlighted shortcomings in both the quality and quantity of data outside of the established City of Melton. Consequently, a drilling, sampling and testing program was conducted. Research of previous work and additional geological mapping supplemented the data analysis. The presentation of the study has been largely cartographic, with each component of
the geology being a separate theme on a basic map.
Seven reports have been produced in the GSV Unpublished Report series:

Unpublished Report 1986/1
Engineering Geological Mapping - A Review
Unpublished Report 1986/2
Engineering Geology of Melton - The Melton Development Area
Unpublished Report 1986/3
Engineering Gealogy of Melton - Drilling, testing and mapping program
Unpublished Report 1986/4
Engineering Geology of Melton - Geology and geomorphology
Unpublished Report 1986/5
Engineering Geology of Melton - Engineering geology
Unpublished Report 1986/6
Engineering Geology of Melton - Map presentation of data
Unpublished Report 1986/7
Engineering Geology of Melton - Summary

ENGINEERING GEOLOGY

1 Isopleth Mappine
Thickness is a soil at Melton. The depth on the cost of water sewerage supply, the foundation res, and road making costs.
Isopleth maps may be used in engineering geological mapping to depict classes of soil, based on similarities of soil properties. It is implied that areas mapped as a particular class will have values of soil properties similar to those recorded for that class, and different from those of at least some of the other classes. Isopleth mapping is often referred to as 'contouring', by analogy with the mapping of topographic height. However, caution is required, as topographic contours are usually drawn to join points of equal measured height, whereas isopleths join points of inferred equal value. In practice topographic contours can be followed continuously, either on the ground or on a pair of aerial photographs, with the result that they can be drawn as accurately as the surveying equipment allows. Soil isopleths on the other hand must be derived from a set of more or less widely spaced points and are therefore subject to sampling variation.

Isopleths maps of soil thickness may be computed from borehole and test-pit observations by utilising computer packages.

1.1 Numeric surfaces

When mapping soil properties, the distribution of a single property may be displayed by assigning to each class on the map the typical value of that property within its class. The value at any one place is not actually recorded - unless there is a sample point (i.e. a borehole or test-pit) - it is predicted. It is realised that the actual value there will differ from the predicted value. The statistical rationale can be expressed as:

$$
\begin{equation*}
z_{i j}=\mu+\alpha_{j}+\epsilon_{i j} \tag{1}
\end{equation*}
$$

where $z_{i j}$ the value of a property at any place i in class j is the sum of three terms:
μ the general mean of the property for the whole area; α_{j} is the difference between the general mean and the mean of class ; ; and
$\epsilon_{i j}$ is a random component distributed normally with zero mean and variance σ_{w}^{2}.

The parameters $\mu, \alpha_{j}, \sigma_{w}^{2}$ and can all be estimated from data as say \bar{Z}, a_{j} and s_{w}^{2} respectively by the least squares analysis and analysis of variance. The predicted value for an unrecorded point in class j is $\bar{z}+a_{j}$, and confidence limits are determined from s_{w}^{2}, the sample within-class variance. The smaller is σ_{w}^{2} more precise will any prediction be, and the more valuable the map.

Where measured data are sparse, as they often are, this approach to prediction and mapping is the only feasible one. It obviously interest and the classification, aven between the property of recognized independently intion, even though the classes are average be substantially greater than zero, oth $\left|\alpha_{j}\right|$ must on classification does not hreater than zero, otherwise the the procedure takes no help to predict the property, However data points and their relations the spatial arrangement of the gradation of values across boundaries. These points, nor of any consequence when data are dense can only be of spatially dependant, and in that evecifically when they are mapping that uses the spatial information means of prediction and preferred.

In such circumstances interpolation provides an alternative to classification for predicting values of a property at unvisited points. Mapping can be achieved by envisaging such values as forming a continued statistical surface over the map plane, which

1.2 Interpolation techniques

Several interpolation techniques are available, especially in computer programs for automatic contouring. Webster (1977) has breifly reviewed some of these viz: linear interpolation across triangulation, inverse square distance weighted averaging, least square polynomials, Theisson polygons, and kriging.
Apart from linear interpolation across triangles, most of these techniques consist of placing a fine, rectangular (mesh over the entire area and computing a new value of the forms of processing point. This process is suited to various transformations. The size smoothing, filtering and fourier frequency content of the resultanesh interval will govern the map detail. Both the type of data and and thus the isopleth influence the choice of mesh interval the desired type of map interpolation technique.

In using weighted interpolation techniques (such as kriging), three steps are involved.
1 Choosing the number of data points in the vicinity of the mesh point being considered. The selection algorithm may locate the closest 'n' noints in 'x' number of sectors surrounding the mesh point normarily within a certain distance.
2 Determine whether the chosen points are adequate in both number and in distribution.

3 Interpolate the mesh value by taking a weighted average of the data values. The weight is a function of the assigned value, operator distance.

Grids generated by computer packages can be manipulated to:

- limit the grid to a desired polygon.
- expand to fill a given area,
- mask out (or in) any areas,
- take into account faults,
- be scaled, added, subtracted, restricted to positive value multiplied, divided, or
number of points for Where the data methods which often represeriging has an advantage over other mathematically desirabiresent compromises between the Though these other melt and the computationally feasible. they may give biased interpolation estimate of the error of interpo whilst they provide no minimise that error.

1.3 Kriging

Kriging is a form of weighted local averaging that is an optimal means of spatial prediction in the sense that it provides estimates of values at unrecorded places without bias and with minimum and known variance. It is based on the theory of regionalised variables developed by Matheron (1963) and Krige (1966) for the estimation of ore reserves in mining.

1.3.1 Variograms

Kriging depends on first computing an accurate semi-variogram, which measures the nature of spatial dependance for the property. Estimates of semi-variance are then used to determine the weights applied to the data when computing the averages, and are

The semi-variance is expressed as:

$$
\begin{equation*}
\gamma(h)=\frac{1}{2} v_{A A}[z(i)-z(i+h)]=\frac{1}{2} \sum[z(i)-z(i+h)]^{2} / n \tag{2}
\end{equation*}
$$

and is a measure of the similarily, on average, of an observation z at point i and another point at a given distance n away. In difference between all pairsce is the average half-squared distance, n. "The quantity values of n from the data and can be estimated for integer semi-variogram.

The semi-variogram has certain important characteristics which (a) reveal the nature of the geographic variation in the prope of interest, and (b) are needed to provide kriged estimates at previously unrecorded points. These are described in reference

Figure 1. Theoretical Variograms.
In most cases it is found that $\gamma(n)$ increases with increasing h to a maximum, approximately the variance of the data, at a Points closer than the range The distance is known as the range. further apart bear no relatione spatially dependant; points periodic variation in the soil to one another, unless there is a to use only those points closer when interpolating, the aim is point.

By definition $\gamma(n)=0$ when $n=0$. However, in practice, any smooth curve that approximates the values of the semi-variance i a positive finite value to origin. Instead there appears to be This intercept is known as the nugge approaches as n approaches 0 . general is known as the nugget nugget variance, and in
sampling practice in nugget in narrow core is a mining where the inclusion of a gold effect accounts for diffa somewhat chance event. The nugget twice. This may occur for reasons such in sampling the same site precision, poor sampling practice, or as poor analytical low scale. Most semi-varipractice, or actual erratic values at effects (Burgess and Webster, of soil properties show nugget embraces fluctuation in the 1980a). The nugget variance shorter than the sampling interval occurs over distances much interpolation.

The value at which $\gamma(n)$ levels out is known as the sill. It represents the range of variance due to spatial dependence in the

There is no general mathematical formula to describe the shape of soil semi-variograms. A linear model, $\gamma(h)=c_{0}+m h$, is simplest, and will often describe $\gamma(h)$ well within range. A spherical model, given by $\left\{\begin{array}{l}\gamma(h)=c_{0}+c \frac{3}{2} \frac{h}{a}-\frac{1}{2}\left(\frac{h}{a}\right)^{3} \text { for } 0<n \leqslant a \\ \gamma(h)=c_{0}+c\end{array}\right.$
may also be hole effect) are described by David (1977, exponential, ah and

1.3.2 Simple kriging

When estimating a value $z\left(X_{0}\right)$ of a property z at point $\left(X_{0}\right)$ whers χ is the vector notation (i.e. $\chi=[X, r]$), the linear sum, or weighted average, of the observed value is expressed as:

$$
\begin{equation*}
z_{0}=\lambda_{1} z\left(\chi_{1}\right)+\lambda_{2} z\left(\chi_{2}\right)+\ldots \ldots . \ldots . \lambda_{n} z\left(\chi_{n}\right) \tag{4}
\end{equation*}
$$

where the λ are coefficients or weights associated with the data points, as discussed in section .1.2.

In kriging, the weights are so chosen that the error associated with the estimate is less than for any other linear sum. The weights take account of the known spatial dependences expressed in the semi-variogram and the geometric relationships among the observed points. In general, near points carry more weight than distant points, points that occur in clusters carry less weight than lone points, and points lying between the point to be interpolated and more distant points screen the distant points in that the latter have less weight than they would otherwise.
The model for simple kriging, analogous to equation (1), section 1.1, for usual survey practice, is:

$$
\begin{equation*}
z(\chi)=\mu_{v}+\epsilon(X) \tag{5}
\end{equation*}
$$

where $z(X)$ is the value of the property at χ within a neighbourhood v, μ_{v} is the mean value in that neighbourhood and $\epsilon(X)$ is a spatially dependent random component with zero mean and variation defined by:

$$
\begin{equation*}
\operatorname{VAR}[\epsilon(\chi)+\epsilon(\chi+H)]=E\left[(\epsilon(\chi)+\epsilon(\chi+H)\}^{2}\right]=2 \gamma(H) \tag{6}
\end{equation*}
$$

and equals $2 \gamma(n)$ if variation is isotropic. It is assumed that μ_{v} is constant for the neighbourhood, though different neighbourhoods may have different means, and that the semi-variogram is the same over the whole area. The last assumption implies that there are no sharp boundaries (faults cliffs). If such boundaries are known to exist then interpolation is carried out separetely on either side.
The coefficients (or weights) are calculated using the equations:-

$$
\begin{equation*}
\sum_{i=1}^{n} \lambda_{j} \gamma\left(\chi_{i}, \chi_{i}\right)+\mu=\gamma\left(\chi_{i}, X_{0}\right) \quad \text { or } i=1,2,3, \ldots, n \tag{7}
\end{equation*}
$$

where μ is a Lagrange multiplier

The matrix notation is given by $:\left[\begin{array}{l}\lambda \\ \mu\end{array}\right]=A^{-1} B$

$$
\begin{align*}
A & =\left[\begin{array}{cccc}
\gamma\left(\chi_{1}, \chi_{1}\right) & \gamma\left(\chi_{2}, \chi_{1}\right) & \gamma\left(\chi_{3}, \chi_{1}\right) & 1 \\
\gamma\left(\chi_{1}, \chi_{2}\right) & \gamma\left(\chi_{2}, \chi_{2}\right) & \gamma\left(\chi_{3}, \chi_{2}\right) & 1 \\
\gamma\left(\chi_{1}, \chi_{n}\right) & \gamma\left(\chi_{2}, \chi_{n}\right) & \gamma\left(\chi_{n}, \chi_{n}\right) & 1 \\
1 & 1 & 1 & 0
\end{array}\right]: B=\left[\begin{array}{c}
\gamma\left(\chi_{1}, \chi_{0}\right) \\
\gamma\left(\chi_{1}, \chi_{0}\right) \\
\vdots \\
\vdots\left(\chi_{n}, \chi_{0}\right) \\
1
\end{array}\right] \tag{8}\\
& \vdots \tag{9}\\
& {\left[\begin{array}{c}
\lambda \\
\mu
\end{array}\right]=\left[\begin{array}{c}
\lambda_{1} \\
\lambda_{2} \\
\vdots \\
\lambda_{n} \\
\mu
\end{array}\right] }
\end{align*}
$$

The minimum estimation variance is σ_{E}^{2}. given by:

$$
\sigma_{E}^{2}=s^{r}\left[\begin{array}{l}
\lambda \tag{10}\\
\mu
\end{array}\right]
$$

The accuracy of kriged estimates depends on the goodness of the computed semi-variogram and two precautions are taken to ensure that the values of $\gamma(h)$ used in the kriging equations are satisfactory. First, the spatial analysis should be performed on long runs of data (or a number of short runs), so that the semi-variances at short ligs can be computed from many pairs of comparisons. Second, a sensible model must te chosen to describe the results, and individual estimates of $\gamma(n)$ can be weighted according to the number of comparisons on which the they are based when fitting the model.

An example of simple kriging (farrelly, 1985) is shown in

1.3.3 Block kriging

 represent volumes with the same size and shape as the volumes of soil irom which the original property was measured. For example, if observations are derived from 10 cm diameter cores, then the the of grid points are strictly cylinders 10 cm diameter. If would also represente test pits, then the computed grid points in this fashion for convenience Although sampling is carried out observation at a singlenience, economics and time, the observer to represent the suple point is usually taken by the nearer to it than any other rounding area, or at least the area gealogist may wish to interpolate point. When interpolating the block many times larger than the an average value for an area or sampled voiume.
kriging carried out over areas, in a procedure known as χ we consider In block kriging, instead of considering a point χ, we consider a region ϑ with an area H with its centre at χ.

The semi-variances between data points and the interpolated point are replaced by the average semi-variances between the data equation 9 is replaced by the integral $\left(\gamma(\chi) \chi\right.$ each $\gamma\left(\chi_{i}, \chi_{0}\right)$ of $\rho(x)$ is given as follows: the integral $\int \gamma\left(\chi_{i} \chi\right) \rho(x) d(x)$ where

$$
\begin{array}{ll}
\rho(x)=\frac{1}{H} & \text { if } X \text { belongs to } \vartheta \tag{11}\\
\rho(x)=0 & \text { otherwise, }
\end{array}
$$

and
(12)

$$
\int p(x) d(x)=1
$$

The weights for block kriging are therefore given by
where
$\left[\begin{array}{l}\lambda \\ \mu\end{array}\right]=A^{-1} s$

$$
s=\left[\begin{array}{cc}
\int \gamma\left(\chi_{1}, \chi\right) & p(x) d(\dot{y}) \tag{13}\\
\int \gamma\left(\chi_{2}, \chi\right) & p(x) d(x) \\
\vdots & \vdots \\
\gamma \gamma\left(\chi_{n}, \chi\right) & \rho(x) d(x) \\
1 &
\end{array}\right]
$$

The estimated variance for the area H is

$$
\sigma_{H}^{2}=s^{T}\left[\begin{array}{l}
\lambda \tag{15}\\
\mu
\end{array}\right]-\iint \gamma(X, Y) \rho(x) p(y) d(x) d(y)
$$

Although a map drawn from point estimates is the more accurate isopleth map, local minor variation can obscure regional trends calock kriging results in a smoother map showing average values calculated over a number of broader areas.

1.3.4 Universal kriging

A third means of kriging, universal kriging, takes into account local trends in data when minimising the error associated with estimation. The presence of such trends or drifts is identified methods. Either (1) a strucm found quantitatively by one of two which simultaneously estimates semi-varis may be carried out, between the drift and the actual data. The semi-variograms are then used fal data. The resulting prior generation of a reqional for the interpolation. Or (2) calculated for the residuals. simplace and semi-variograms are produce the numeric surface. Simple kriging is then used to \because

Universal kriging is not comprehensively applicable to soil survey (Webster and Burgess, 1980), mainly because of the large nugget variances usually encountered, which arise in part because measurements are made on small widely separated volumes of soil. These effectively prevent any distinction between constant and changing drift.

Universal kriging would not be applicable to the data obtained at Melton for these reasons.

1.4 Soil thickness mapping - Definitions and parameters

Soil thickness, like many geological parameters, has a certain amount of subjective judgement incorporated into a definition. Past work in the area (MacIsaac and Key, for the Melton Sewage Authority, 1972) has set a definition of soil thickness as being the depth to powered-auger refusal. A map depicting "rock contours" was produced and used as a guide in the drafting of tenders for the installation of sewerage and storm-water pipelines. Since cost of excavation increases rapidly when basalt is encountered, such guides are valuable.

In the engineering geological sense, soil is defined by "all unconsolidated materials above bedrock" (Bates and Jackson, 1980). This definition includes cobbles and boulders ('fioaters') surrounded by soil which are common in residual basaltic soils and such floaters are sufficiently large and unweathered to cause powered-auger penetration refusal when encountered. Thus, power-auger refusal may be a misleading definition for soil depth, although the only feasible one. This in turn, results in a variation soil depth over short distances (which accounts for the large nugget effects in the semi-variograms).

Where a sample point represents an excavated test-pit, the soil depth is taken as depth to excavator refusal. If the sample point represents a borehole drilled by a percussion or diamond drill, then the soil depth is judged from the borelogs as being the top of the first encountered rock which would refuse penetration by a powered-auger.

Sample points where rock was not encountered and points where penetration refusal occured on alluvial gravels or calcareous nodules were not included in the computations. However, they were used in checking the accuracy of the isopleth map on completion.

Approximately 1100 sample points (boreholes and test-pits) were available for scrutiny within the map area. Of these, 648 were selected into the data base which formed the basis for the soil depth computations. The selected points represented those for which a positive soil depth value could be given.
Since the data were collected from several sources, the quality varied according to the origin. For some of the data the locations were approximate, as the coordinates were scaled from locality diagrams included in reports. For other data the sample
locations were surveyed.

soil depth values were generally precise. The only exception was included - the epths tended to correspond to the length of a drill-rod (i.e. .00m, etc.) in most of the locations. However, for one

The quality of the data is tabulated below.

Table 1. Soil Depth Data Quality.
The distribution of data (Fig. 2) presents a challenging iffculty in numeric surface calculations. The 'clumping' of the sample points makes gridding difficult, because the uneven

1.5 Numeric surface computation

The numeric surface representing soil depth was computed using a phage supplied by Engineering Computer Services Pty Ltd (ECS). The program - GPCKRG - is part of an interactive general purpose gridding and contouring package known as GPC/GFCINT:
computation of the semi-variograms, the fitting of either a simple linear or spherical model, and kriging using le, block or universal kriging methods. During the

* including trends or faults,
* expansion of the grid beyond the data points,
applying smoothing operators to the grid
* limiting the grid to positive values only,
* the use of a sample location tolerance to simulate sampling error,
* including data from outside the grid area.

The computed grid may then be masked to include or exclude given areas.

1.5.1 Variogram computation

For the data set available, semi-variograms were computed to establish the suitability of the data to kriging. The shape of the variogram computed (Fig. 3) showed a distinct nugget effect, range and sill value. This indicated that the data set is suited to treatment by kriging.

Semi-variograms were computed in the four cardinal directions to check for any possible anisotropies (Fig. 4). The resultant variograms showed no substantial differences in their shapes, which indicated a lack of anisotropy in the data set. The similarities of shape in the directional variograms also indicate the absence of strong regional trends (or drift), which alleviates the need for universal kriging.

From the total variogram, the modelling parameters were chosen. A spherical model was judged to best fit the data, with a nugget of 0.5 metres, a sill of 3.8 metres, and a range of 400 metres. The model is plotted on the variogram in figure 5.

Several interesting observations can be made from the variograms. The average nugget effect indicates that the uncertainty in sampling the same location twice is 0.5 metres. More simply, this means that the soil depth can only ever be predicted to the nearest half-metre, even in the most frequently sampled Iocations. The average range of 400 metres indicates that the soil depth can be predicted (with a calculated confidence) from an observation in one place to another place up to 400 metres distant, after which there is no relationship. The sill of 3.8 metres represents the average difference in observations greater than 400 metres apart, or more simply, the maximum error in prediction.

1.5.2 Kriging

The variograms illustrate that the data set is suited to either block or simple kriging techniques. Kriging the data in blocks of 100 X 100 metres (same as the grid mesh size) was chosen as the most applicable method. This choice is based on an examination of the end requirement, ie. the production of a soil depth map which indicates the average thickness in an area, without being site-specific. By using block kriging the map indicates the average thickness that would be encountered over 100 X 100 metre cells (ie. $10,000 \mathrm{~m}^{2}$) which provides a suitable basis for making decisions pertaining to an area, rather than a specific site.

The gridding parameters were as follows:
mesh size
scan distance
data distance tolerance points searched per octant

100 X 100 metres 2800 metres
metres

Na .	Covariance	Proulation																			
0	3.54	233	508	1767	67/736		950	Iepl\|	\|633	206d			114 E	126?	118	Erg					
																		361	1382ㄹ	515	26

There was no:

grid rotation,
extrapolation beyond the mesh points,
logarithmic gridding,
smoothing,
limit to interpolation, and
restriction to a boundary polygon,
The grid was later masked to exclude the gridded area outside of the Melton development area boundary. This was carried out by utilising another GPC program (GRDMSK).

The gridding parameters were chosen to best fit the density and distribution of the data. The scan radius naturally presents a problem, since it can be seen from the variograms that the radius of search should be 400 metres. Using sample points 2800 metres away to predict mesh point values is not reliable (even though their weighting would be very small), but unfortunately necessary to prevent gaps in the grid. The only alternative would be to acquire more data.

By using a data distance tolerance two problems are simultaneously solved. The first is that kriging is a process which honours the data (subject to the mesh size selected). This assumes that the sampling is repeatable, even when a nugget effect is present; which is not always valid. The use of a distance tolerance simulates possible error in sampling and results in non covariance between samples, which relaxes the criterion to honour the data. The second problem is that much of the data was scaled from plans and diagrams to provide AMG co-ordinates. This introduces a real error (assumed to be in the order of five metres), which can be accounted for by the data distance tolerance.

1. 6 Validity checking

The resultant soil depth plot required a validity check in order to assess the end result in terms of the real data. For this purpose an isopleth plot was compared with plots of the distribution of sample points in each range (Figs 1 to 10 , Appendix II). The comparison was good, as would be expected from the gridding method chosen.

A rigorous test was performed by comparing the resultant isopleth map with plots of sample locations which were not included in the data set, but for which minimum a depth of soil is known (Figs 11 to 17, Appendix II). These sampled locations are those where the borehole or test pit did not encounter rock, and so strictly were not originally included. The comparison was generally very good, although in one small area known soil depths were consistently deeper than that predicted by the numeric surface. In this area an adjustment was made by including bores with the known soil depth.

The resultant variogram was little changed (the sill was adjusted to 3.6 metres), and so the overall adjustment to the grid was minimal.

1.7 Numeric surface representation

Two numeric surfaces are produced by the kriging techniques described above.

1 Soil depth

The resultant grid of soil depth values is illustrated as a shade-colour plot in Figure 6. By using shade colour, the minor variations are not so obviously displayed as on the corresponding isopleth plot (Fig. 7). The overall impression of gradation is given, rather than the concept of distinct boundaries.
2. Confidence values

The second surface computed by the program represents the confidence placed on the soil depth values. This surface is illustrated by a shade colour plot in Figure 8. The confidence values are expressed in metres and depict the 'plus-or-minus' values that can be placed on the predicted soil depth values at any given place. As expected, the confidence is high in areas where the data is dense, and poor in areas where data is sparse (as modelled by the variograms).

The confidence values highlight the lack of data in some areas of the map, such as the southeast corner, where the soil depth can be read as one metre plus-or-minus three and a half met:es. However, the philosophy behind the attempt to illustrate soil depth is that any information is better than none at all, and the confidence grid can be included as a reliability diagram.

1.8 Geological interpretation

The resultant isopleth map of soil depth illustrates some interesting trends which have geological implications.

The variation in depth of soil may be due to two main causes. Firstly, differential weathering, or weathering that occurs at different rates as a result of variations in composition and resistance of a rock, or differences in intensity of weathering due to topographic or climatic conditions. Secondly, differences in geologic age of various surfaces, resulting in the development of younger and older weathering profiles.

In the Melton development area, the variations in soil depth can be interpreted as being due to a combination of geologic age and differential weathering. For example, the area of Melton closest to Mt Cottrell (i.e. the south-eastern portion of the map) shows uniformiy shallow soil. This implies that some lava flows from the past volcanic eruptions are represented here by their shallow weathering profiles. The edge of the flow is bounded by Toolern Creek, the other side of which the soils thicken. These thicker soiis would be formed on older lava flows and so have had time to weather deeper at an accelerated rate due to the moisture provided by Toolern Creek.

Similarly, the shallow soils in the north-west area would represent the most recent lava flow from the eruption point at 'Melton Park'. The thicker soils south and east of this flow would represent the soils in the older flows.

1.9 Geotechnical interpretation

The soil isopleths are a very useful guide to geotechnical parameters for decision making in development planning. The areas where soils are thin present problems for the servicing of developments with sewerage and storm-water drainage. In these areas excavation would often be carried out by expensively and laborously drilling and blasting.

Areas where soils are thick represent the problem areas for housing development, as the basalt soils have high shrink-swell potential, and maximum heave would occur on the thickest soils (section 4.2). Similar consequences relate to road making.

1.10 Further work

The upgrading of the soil isopleth map can be very easily carried out by adding new information to the data set and computing new numeric surfaces to plot. This would refine both the accuracy and confidence of new plots.

One spin-off from using kriging as a gridding technique is that sampling programs can be easily planned to achieve a required confidence value. For example, if soil depths to the nearest metre were required to be known in an certain area, then by perusing the variograms an optimal grid spacing could be chosen to achieve the desired result. This could be useful for the development of large subdivisions, where it is advantageous to know where shallow rock occurs.

2 Groundwater

The nature of the groundwater regime can be an important consideration in the engineering development of urban environments. Shallow groundwater tables can cause settlement building foundations, as can over-extraction of a groundwater resource (Leggett, 1973). Large expanses of pavement increase runoff from storms and decreases the total amount of water recharging underground supplies. Similarly small residential lot size renders large areas impervious (Leopold, 1968).

Groundwater was not encountered at any time during the drilling program. Several open standpipes were installed in the deeper soil areas, and with one exception, groundwater was not encountered during one year of monitoring. The one exception (Djerriwarrh 102), was adjacent to the Toolern Creek, where water was encountered in gravel beds.

Table 2 documents the monitoring program.
Aspects of the occurrence and distribution of groundwater in the region have been documented by Kenley (1960 \& 1977), Thompson (1972), Rhia (1975 \& 1976), Plier-Malone (1977), and Williams (1983\& 1986). Essentially, the groundwater in the region occupies the two major sub-horizontal geological formations, the Newer Volcanics and the Werribee Formation (U.R. 1986/4).

Table 2. Open standpipereadings.
Note. Fron 16.8.'84 the accuracy of recording was improved Groundwater encountered in bore djerriwarrh 102.
Bore Djerriwarrh 101 was situated in low-lying area.

The Newer Volcanics consist of layered sequences of basalt flows and interbedded soil layers of low permeability. The basalts are differentially cracked by large numbers of thermal contraction joints which represent about 0.5% by volume of the rock and serve both as the main space for water storage and the channelways for water movement. They generally contain at least two separate aquifurs - upper and lower - which in places are vertically interconnected and operate as a two aquifer system (Kenley, 1977).

The upper basalt aquifer is an unconfined water table aquifer which is recharged by direct slow infiltration of rain or stream water. The lower basalt aquifer is a confined low pressure aquifer. Water enters this aquifer in areas where it locally outcrops and partly also by vertical leakage from the upper aquifer in places where the low permeability interbeds are lacking.

The Werribee Formation contains a number of porous sand and gravel layers each of which behaves as a confined aquifer under considerable hydrostatic head. The groundwater in this formation occupies the pore spaces between the sand grains which may represent up to 25% by volume of the sand. These sands do not outcrop in the map area, and recharge may be from the north and west where the Formation outcrops, or from downward leakage from the basalt aquifers

Information on the groundwater in the Melton Development Area is generally lacking. Only 36 of the researched bores had standing water level measurements, while 45 had groundwater quality information. Two numeric surfaces were computed from the data.

The first - a grid of the standing water levels - was computed using a general purpose gridding program (GPCGRD; ECS, 1986). The second - a grid of the height above the AHD of the potentiometric surface - was computed by subtracting the standing water level grid from a grid of the topographic surface. These surfaces are illustrated in Figures 9 \& 10 .

2.1 Water Quality

Table 3 details the quality of the groundwater within the map area.

In general terms, the groundwater in the Melton map area is of the sodium-chloride type with some magnesium sulphate. There are, however, some differences both in concentration and percentage.
A major study of the groundwater conditions of a proposed quarry site (bounded by Ferris Rd, Mt Cottrell Rd and the
North-Western Railway) found that two water masses, one in the upper and one in the lower aquifer, can be identified from water quality (Williams, 1986). Figure 11 illustrates this difference where the Stiff diagrams for the upper and lower aquifers from test pump well samples and two farm bores have been compared. The difference is due to a greater percentage of magnesium chloride in the lower aquifer and sodium bicarbonate in

FIGURE 9 - STAHDING later lelels

FIGURE IO GROUMDUATER POTENTIOIETRIC SURFFCE

(u) - upper aquifer Kororoit; P - Pywheitjorrk; Y - Yangardook.

Table 3. Water quality.
the upper aquifer. These differences are probably caused by the residence time being less in the upper aquifer. The analyses also show a clear cut salinity gradient with depth. In the upper aquifer total dissolved solids (TDS) values of $2020-2480 \mathrm{mg} / \mathrm{l}$ are recorded while in the lower aquifer the values ranged from $2800-6600 \mathrm{mg} / \mathrm{l}$.

With the exception of one bore (Djerriwarrh 8003), all the groundwater recorded has levels of total dissolved solids higher than generally recommended for human consumption. The World Health Organisaiion (WHO) sets a desirable limit of $1500 \mathrm{mg} / \mathrm{l}$ with an objective limit of $500 \mathrm{mg} / \mathrm{l}$. The sodium content is well in excess of the taste threshold recommended by the WHO of 150 mg / l. Generally, the iron content is such that it would cause staining of bathroom fixtures and could stain clothes washed with the water.

The groundwater would be suitable for some stock watering, the limits for TDS and magnesium in drinking water of livestock are given in Table 4.

The agressiveness of water is a more complicated quality to determine, involving many variables related to both the water chemistry and flow rate and the nature of the material under attack. The state Chemistry Laboratory consider that, in general, water with a TDS of $3000 \mathrm{mg} / \mathrm{l}$ or greater is probably aggressive toward metal.

Figure il. Water quality variation in the aquifers. (Williams, 1986)

One problem with the quantity of test data is that there are insufficient to form accurate numeric surfaces. Gridding the data and producing isopleth maps is not feasable because of the extreme variability in the data over short distances (in three dimensions), which makes prediction speculative.

The distribution of soil samples tested to determine the various engineering properties is illustrated in Figure 12. The data set is essentially a scatter of points (in three dimensional space) which require graphical representation to study their relationship in any configuration. These graphical pictures are useful to confirm or contradict previous concepts, and may reveal new ideas in a dramatic way.

There are many of these graphical techniques available. The simplest code a single numerical value into a simple character (Fig. 13). Others code single values of two or more variables into one compound character (Fig. 14).

When designing or choosing compound character scales, consideration must be given to whether the scales are separable (i.e. whether one can easily shift attention from one coded aspect to another), and whether the coded aspects are individually value-mergeable into impressions of regional trends.

Of the compound character scales shown in Figure 14 , the most unusual and versatile is the Chernoff face (Chernoff, 1973). A revised version of the face by Davis (Bruckner, 1978) allows the coding of up to 20 variables .. (Fig. $15 \&$ Table 5). Much has been written on the merits and demerits of the use of Chernoff's faces (Wang, 1978).

The major difficulty in trying to represent the Melton soil test data is that the data has variation in all three dimensions (i.e. there are multiple 'z' values at any x, y location).
Representation of this foliation or layering at quite different levels of ' z ' has not been solved. One suggestion is the procedure of locating the 'most imposing gap' in the collection of ' z ' values for nearby (x, y) points followed by smoothing (Tukey \& Tukey, 1980). Then to study the foliated structure several kinds of plots can be generated, such as smoothed gap location values, display the original points coded in some way to indicate which layer they are in, or make separate displays for the points in each layer. All these methods, however, are inappropriate, since the variables still require 'layering,' into intervals.

In representing geochemical data, the use of 'flag maps' can overcome the difficulty of three dimensional representation (Farrelly, pers. com., 1984). Figure 16 shows the liquid limit values iIlustrated as a flag map. From this it can be seen that the geographic variation and the variation with depth is not clearly represented. In general, the area to the north and west have higher liquid limit values than the areas to the south and east.

LEGEND

- - DATA POINT

engineering geoldgical mapping of melton. victoria.	
$\begin{gathered} \text { Flgure 120 } \\ \text { DISTRIEUTION OF SOIL TEST DATA } \end{gathered}$	
PROJ NO_{\square}	NO: GE 14 DATE: $16-N O V-87$

Figure 13 . Several possible individual-value simple character scales. (Tukey \& Tukey, 1980)

Figure 14. Several possible individual-value compound character scales. (Tukey \& Tukey, 1980).

The correlation of high Atterberg limit values, $L S$ values and $F S$ values with areas of deeper soil is quite good (Fig. 17) These areas with high swell potential and deep soils constitute the worst possible conditions for development. In these areas the soil will exhibit large shrink-swell values and have the maximum depth (therefore the maximum volume) for heave (section 4.2)
4 Suitability for Development
4.1 Past assessments

In their assessment of the existing environment at Melton, Clarke Gazzard Planners Pty. Ltd. found:
"Foundation conditions experienced in Melton are similar to those in Helbourne's Western Suburbs.

The material underlying most of the study area is of basaltic clay type. It is moderately expansive but does not present serious problems nor impose significant cost penalties in normal types of single and double storey domestic and commercial construction.

Design of services and foundations needs to compensate for some seasonal fluctuations.

Minor areas such as that in the south east near Greigs Road where Rockbank Association soil occurs could present problems in road construction. Special measures may need to be taken to combat erosion in the zones of alluvium associated with Toolern Creek and most extensive in the north east and near the reservoir in the south west of the Designated Area." (Clarke Gazzard, 1976)

This assessment was based on a CSIRO terrain classification map (Grant, 1972) produced at a scale of 1:250000, and enlarged to approximately 1:55555 for inclusion in their report. The Terrain Patterns of this map compare remarkably closely to the $1: 250000$ Melbourne geology map (1972). Both these maps are erroneous.

On the matter of soil classification (presumably in the engineering sense), Clarke Gazzard Planners pty Ltd concluded:
"The major proportion of the study area is underlain by a basaltic clay type material. This material is similar to that which occurs in the western suburbs of Melbourne, in summer being very hard with considerable surface cracking whilst in winter it is moist and puggy. It does not present any serious problems in regard to conventional domestic or commercial types of building up to two storeys in height when properly designed to account for the seasonal movements and the expansive properties of the soil. Excavations for footing or services is somewhat more difficult because of the presence of rock floaters which vary considerably in size and may require the use of explosives to achieve the desired shape. Such difficulties in excavation are reflected in higher earthwork costs than would apply in other areas.

Based on the preliminary information available soil conditions in the study area do not represent a planning constraint." (Clarke Gazzard, 1976)
Born bepth anown

Scata ineor
GE 14 LIMIT VALUES
PROJ NO. GE $14 \mid$ DATE: 16 -NOV-87
3

Following recommendations made in the abovementioned report, the DVA was commissioned to examine the requirements for drainage and flood mitigation at Melton. As a part of this study the DVA requested the SCA to report on the land capability of the area, part of which examined the suitability of particular areas for subdivision and septic effluent disposal.

The investigation identified 12 separate land units, based on topography, drainage line entrenchment and soil types. (Fig. 18) The capabilities for the various units for urban subdivision are presented in Table 6 (SCA, 1978).

This study highlights the benefits of an initial rapid assessment, for planning purposes. The important aspect is that certain land was recognised as being poorly suited to subdivision.

A further study by White and Kelyneck (1985) delineated 32 map units describing a specific topographic element and associated soil type. The capability of the land was then assessed for various land utilisations (viz. secondary roads, septic tank absorption fields, building foundations, farm dams, shallow excavations, rural subdivisions, and urban developments).

This study emphasizes the pitfalls in rapidly producing maps which imply that a detailed study of the area has been made. Examples of poor assessments are easily found - the area affected by gilgai and subsidence 'sinkholes' (U.R. 1986/4) is rated as "good" for building foundations while the area between Toolern Creek and Gisborne-Melton Road (which is here considered good) is rated by the assessment as being "very poor".

4.2 Building Foundations

The geological conditions beneath urban areas provide the ultimate support for all structures in that city. The relevance of the engineering properties of the geological foundation materials has therefore been studied for centuries. Since the evolution of cities in society, the construction of buildings has been subject to regulatory control, often including rules regarding foundation conditions. The Code of Hammurabi (2067-2025 BC) is thought to be the first set of building regulations ever recorded (Leggett, 1973).

In Victoria, the building regulations first incorporated strict control of the foundations for building construction in 1980, when an amendment to the Uniform Building Regulations (UBR) was introduced in response to pressure from the building and insurance industries to decrease the incidence of distress in domestic housing. There were several reasons for this. Firstly, the trend in housing from the 1950's had been toward single-leaf masonry veneer construction ('brick veneer'). This form of construction is less tolerant to movement (i.e. less flexible) than the 'weatherboard', or 'fibro' houses of the pre-1950's. In addition, the growing desire for quality and the increased

awareness of consumer rights meant that house owners were less forgiving toward signs of distress. Less geologically suitable land was being subdivided as Melbourne's western and south-western suburbs grew. A trend toward tree planting in home gardens, particularly native gardens, also increased the incidence of distress, since most of the problems were with seasonal movement of expansive soils. This same ammendment to the regulations also required that a builder guarantee his/her work for six years.

In 1983 the Victoria Building Regulations (VBR) were introduced to bring Victoria into general compliance with regulations in other states. The relevant section of these regulations covering footings and foundations is included as Appendix III. Essentially these regulations state that foundations are to meet three requirements:
i) Assessment of adequacy - (regulation 32.2)

The adequacy of foundations shall be based on approved
a) well established and relevant local knowledge and experience of foundation conditions in the vicinity of the proposed building; or
b) tests on the foundation materials.
ii) Allowable bearing pressures - (regulation 32.4)
the bearing pressure on the foundation of a building shail not exceed the values given in the regulations unless-
a) an investigation of the foundations has been conducted and the building surveyor is satisfied in the light of the report on that investigation, that higher bearing pressures are justified; or
b) an investigation of the site has been conducted under AS 1726 and the bearing pressures are based on the information obtained from that investigation.
iii) Foundation classification (sub-regulations $3 \& 4$, regulation 33.4)

The classification of the foundation of any site on which footings are to be constructed shall be in accordance with the "Classification of Expansive Behaviour of Melbourne Soils for Domestic Construction" published by CSIRO and AEBIRA
(Australian Engineering and Building Industry Research Association). (sub-regulation 3)

In areas outside the Metropolitan area (those shown in figure 3 of the publication referred to in sub-regulation (3)) the site on which the footings are proposed to be constructed shall be similarly classified by adopting, where practicable, the principles stated in that publication and taking into account experience or knowledge of local or traditional building construction practices. (sub-regulation 4)

The last of these three requirements has special relevance at Melton. The classification system relates the expected expansive behaviour of the foundation to the performance of the minimum standard footing design recommendations. Three categories of movement are used, viz. stable, intermediate and unstable.
The soils of Melbourne are subdivided geological origin. A simplified map referred to in the CSIRO and AEBIRA of the major soil types Figure 19. Soils of the and AEBIKA publication is reproduced as subdivided on the basis of geological origin are then further reproduces the classificat their typical soil profile. Table 7

The requirements for the classification of sites and the design and construction of residertial slabs and footings are now covered by Australian Standard AS2870-1986 (Residential Slabs and Footings). The standard was prepared in response to an Australia-wide need for guidance on the design of slabs and footings for houses, and although a wide range of conditions is covered, the standard places particular emphasis on the design for reactive clay sites susceptible to significant ground movement due to moisture changes. The standard may be used to satisfy the requirement that the structural design of footings and floor slabs shall take account of the foilowing:
a) Swelling and shrinkage movements of reactive clay soils due to moisture changes.
b) Settlement of compressible soils or fills
c) Distribution to the subgrade of the applied loads
d) Tolerance of the superstructure to movement

The standard sets out the requirements for:
a) the classification of a site; and
b) the design and construction of a footing system, including slab supported on the ground, strip and pad footings or a piled or piered system, which supports a masonry or framed one or two storey house, extension or outbuilding.

The sections of the standard relevant to site classification are included in Appendix IV.Oua:ernery Alluwien
-sands, silts and cleysQuaternary Acstian
-sands

Devenian Grandaraite and Granite
-clays
$\begin{array}{cc}\substack{\lll \\ \lll<} & \text { Devonian Rhycdasite }\end{array}$
Silurian and Devonian Sediment
Ordovieian Sedimen -days

Groflogical Anvernplion nt :ail		Tyurital	Ony la			
	Appomimip dpal \| 1 Mา	Laxal\|ar		San 8 sma		
			Textma			
Onitipliary दilatym - saide wils endidips	Whathe Dilta					
	$\begin{aligned} & 0-100 \\ & 100 \cdot \end{aligned}$	Geol. Man 7627, Ref Opw Glam ${ }^{7 / 7}$ Fipli $52010-81 / 2$				
		Fefl bown theper m	Situr	Swht		
	Cavum Sump					
	$0-30 \mathrm{~J}$ $300-2000-$	859 Fel 05 . Gion Rel $52010-013$ Dath gep sand traxoil Gipy and borm andy day with occaisonal focmel Impers	Stade	Stable		
	$0-600$ $600-2000+$	Beed (typ repsol Gry end browntand la ciaty sand 	Slabe	Sible		
	$0-300$$300-2002+$	Blect stity sind or cley lepoiol Bromorury peliow sand, ;illy spand on deres seind wilh atataioral sondy clep leyers.	Stabie	Stade		
	$0-200$$200-20001$	Thp following pidie in untommen bul may octer near reek ind wiwns.	Inturndiale	Intemeciate		
		Blach ity topeoil				
		Grey and biome chy				
		Port Mithoune-South Mitbunne Alies				
	$0-600$$650+$	Geol. Mipip Ons		Sidte		
		Buxs latilitedilly chy	Spible			
		Sand sitha silipeter				
		Geod. M app Prp	Sout	Stade		
	0-400	Dakg gipy sandif topail				
	400-7000	Giey $\mathrm{mand}^{\text {d }}$				
Quitititary Aedien - 5and	0-150	Dark gery brow ,ity sand sopsoil Light yellow giky sind Various claps	Sidult	Sabile		
	150-303+					
	3004					
	0-2000	Unilomin prey todals gep yand	Stibe	SIblle		
Guabienary Brasits - clows	$0-100$ 100-10ch	Brown to blach cley ropsail rallion Ilofites				
		for witch loes: hoowldye indicales patiplodems.	Unstidle	lutismedrat		
		 	kithrediale	Intielmedait		
		\|el Vetip shatlon wils < $\langle 200 \mathrm{~mm}$ clofl thete evge trimy ul stable or IWalloges may bit lounderd tan icck,	Stalle	Sidit		
	0-150		Intilutdily	Invirutidile		
	150-100.					

Teftiery Basals - chay	$\begin{aligned} & 0-400 \\ & 400-10 \mathrm{CK} \end{aligned}$	Dilk peey Io redisish clajep topial Dalk gry or rededith brown ic brown highly plaitic day	Inermedite	Internedite
Devomian Gimondionite anduranice - dop	$0-200$ $200-600$ 600-rock	Gitey at bown sandy toxity yoprail Grey and brown sify yand to ceveryill Wolled red, bicwn and geyey chy	Stable	Slajle
Devarion Rhyodarite -tbys	$0-200$ 200-700 700 -rock	Giey lo bovm sily tepsoil Geeprow, yellow brown or red brown sity orsande cley, moorled Molled ded boom and gery pellow brewn or orange ciay generilly sili 10 very sith, mby conlan sill, sand or grave	Stuble	Suble
Otdovian. Siluing and Deverion Sediments - clays	$0-100$ $100-400$	Geryo greer beom sill topsoil Gey, gap bowno pellowibs sith iosily cly. Stot when met, had ind.	Stable	Stuble
	40-1ach	Motuld yelow yever erdedish bewn chay		

Essentially, the site classes are designated as follows:
Foundation Character Class

Sand and rack	Stable		A
Sill and some clay		S	
Moderately reactive clay	Reactive	M	H
Highly reactive clay			
Extremely reactive clay		E	
Sand	Con	fill	A
Material other than sand		A to	
Mine subsidence	Problem	P	
Uncontrolled fill			
Landslip			
Soft			
Collapsing soil			

All site classifications for Victoria are based on one or more of the following:
a) Assumption of a soil type without any site investigation from a classification map or from well established local knowledge provided that soils are known to be consistent over large areas. The soil type and site conditions shall be checked by a site visit before construction.
b) Site investigation to identify soil profile using one or more boreholes or test pits in the site or a number distributed over a subdivision.
c) Site investigation using a penetrometer, for sand sites.
d) Site investigation including soil sampling and appropriate tests.

Where a Building Authority has designated a presumed site classification or simplified system based on a map of site classifications, this may be used but shall not preclude the adoption of a less severe classification if supported by a site investigation and a classification in accordance with the standard.

This standard is not referred to in the VBR at present, however it is intended to be incorporated if possible (E. Carroll, pers. comm., 1986).

An attempt to map the site classifications referred to in AS2870 is illustrated in Figure 20. This map is derived from a combination of soil depth, swell potential and soil genesis. The site classification method, then, is by soil profile identification (Appendix C, AS2870) rather than by surface movement calculation.

4.2.1 Class P (problem) sites

The area described in Unpub. Rept. 1986/4 - the 'sinkhole plain' is the largest of the problem sites identified within the Melton development area. The most obvious problem for development of this site is the active subsidence. Roads, housing, and sewerage systems would be seriously damaged by sinkhole development. The unpredictability of the sinkholes makes the siting of any structures hazardous. It is likely however, that areas of the site could be found where the potential for subsidence would be lower.

The soil subsidence occurring in this area would classify the site as a class P (problem) site according to AS2870. The presence of deep basaltic clay classifies the site as "unstable" for strip and stump footings and "intermediate" for slabs or footing slabs according to the Victoria Building Regulations (VBR). The regulations set out the minimum dimensions for either type of footing, which are not condidered adequate for this site. The depth of highly expansive clay and the potential for sinkhole development create unusual foundation conditions which require special engineering design for footings.

Buildings founded on expansive soil need careftur attention paid to building design and maintenance, in order to mitigate or control structural damage. Properly engineered foundations, segmented interior design, flexible connections to utility lines, and carefully designed lot drainage and landscaping are required for satisfactory building performance.

Selection of building sites in areas where the soil is thinnest and removal of all trees surrounding buildings would lessen the risk of subsidence occurring, although not entirely rule it out. placement of the footings on the rock (by designing pier and beam footings) would ensure that the building would not subside, even though the soil may. Chen (1975) warns that pier and beam design does not always work in expansive soils, since the swelling and shrinking can produce considerable lateral and frictional forces on the piers.

An alternative solution would be to replace the foundation soils with non-swelling granular soils. Chen (1975) suggests at least 1.5 m under the footings and 3 m beyond the building line soil replacement will lessen the chances of building distress considerably since it would overcome the effects of the expansive soils and cushion the effect of any subsidence. The possibility of subsidence cccuring still remains, although the effects would be less dramatic on the surface due to the compensatory movement of the granular soil.

Other problem sites identified are very small areas where farm dams seen on aerial photographs taken in 1943 and 1967 have been infilled.

4.3

Sewerage
An investigation of the usefulness and limitations of various methods of treating or disposing of domestic waste waters was carried out by the Environment Protection Authority (EPA) and reported on in 1975. The report found that reticulated sewerage is the only really satisfactory method of dealing with domestic waste water discharges on long-term basis. However, in non-sewered areas several alternatives were available for waste disposal (Table 9). For environmental reasons only the "all-waste" treatment systems are considered suitable, as the previous practice of sullage disposal by direct discharge to creeks or drains is no longer acceptable.
of the all-waste disposal units the septic tank with soil absorption has some specific geological requirement. Although in principle, surface irrigation with effluent is possible, normal domestic waste disposal do not use this method for both aesthetic and health reasons. Nearly all septic. tanks using soil absorption of effluent use absorption trenches. In the ground absorption process, the soil factors which determine the rate of absorption of water are:

- infiltrative capacity of the liquid soil interface
- percolative capacity of the soil itself
-. effective soil particle size
- trench loading

The first two factors determine the rate at which liquid enters the soil and can percolate away, and therefore play the major part in absorption process. Treated effluent however is considerably different in composition to pure water, and for the case where a septic tank effluent is being applied the infiltration rate is always less than the percolation rate due to clogging of the interface with suspended matter and biological growths, as well as a swelling of hydrated soil particles and deflocculation by added sodium or potassium ions. (EPA, 1975a)

Measurement of infiltrative capacity is difficult and it is usual to measure percolation rates or soil permeability (hydraulic conductivity) instead. Both the Victorian Health Commission and the EPA have used percolation tests to assess infiltrative capacity. The EPA has developed a standard test to measure the percolation rate of soils in relation to septic effluent absorption (EPA, 1975b). This procedure is based on that of the U.S. Public Health Service, and simply entails excavating a standard hole in the ground, soaking the soil in the hole for a minimum time, and then measuring the percolation rate of the soil as a drop in water level in the hole over a standard time.

Research of three methods of measuring soil permeability (Winneberger, 1974) shows poor reproducibility when using the percolation test method. Past experience in performing many of these tests has led to a disregard for the usefulness of the test. The results vary markedly according to the soil fabric, season and site specific location.

WC only

* Septic tank plus: soil absorption sand filter transpiration bed chlorinated discharge
* Incenerator systems
* Humus toilets
* Storage in holding tank - periodic removal
* Chemical stabilisation - storage and removal
* Cesspits
* Pan service

All Waste

* Septic tank plus: soil absorption
sand filter
transpiration bed
lagooning
chlorinated discharge
* Small treatment plant plus: chlorinated discharge lagooning transpiration bed soil absorption sand filter

Sullage only

* Septic tank plus: soil absorption
* Soakage pit

Table 9. Current domestic waste water disposal methods.

The soil requirements for absorption of septic tank effluent are as follows:

- moderate to high permeability (above $10-5 \mathrm{~cm} / \mathrm{sec}$)
- percolation rate greater than $2.5 \mathrm{~cm} / \mathrm{hr}$.
- Low clay content
- low shrink/swell potential
- not subject to flooding
- no shallow impermeable horizons
- ground water-table at least 1 m below the trench bottom

For the development area, it is intended that most of the dwellings will be conected to a reticulated sewerage system. However, in the low density areas, some septic tank systems may be installed. For these reasons no regional assessment has been made of suitability of effluent absorption. In general, clay soils are not very good because of their expansive nature and very low permeability

The area in the north west corner (the 'sinkhole plain') presents a difficulty for sewage disposal. Because the site is isolated from the Melton City by a proposed regional cemetery, is was not intended by the ULA to service the site with reticulated sewerage.

Alternative sewage disposal would be limited to above ground methods (e.g. composting, chemical or incinerating toilets, "grey water" irrigation, etc.), since the perneability of the clay is too low to provide adequate effluent absorption. Even in areas where septic system absorption lines could be located in the gravel/sand/silt layer, the localised addition of moisture to the underlying expansive clay would cause excessive swell and distress in the sewerage system. Similarly, sand filters or other in-ground disposal would be ultimately unsatisfactory.

4.4 Roadmaking

In Victoria the common practice in roadmaking has been to use flexible pavements for most highway and suburban roads. The RCA have published guidelines for the design of flexible pavements which are used by road engineers in victoria (CRB, 1980a).

In the process of arriving at a pavement thickness and composition it is necessary to consider many factors. These may be classified into five broad categories:

[^5]The conditions of the subgrade is the most relevant to the engineering geological mapping in the Melton development ar general, the support provided by the subgrade is the most important factor in determining pavement design thickness composition and performance (CRB, l98Ua). The subgrade should be prepared and compacted so that its long term bearing strength is as uniform and as high as possible. In sjtu strengths during construction may differ greatly from the strengths ultimately developed at the equilibrium moisture content.

The long term strength of the subgrade is governed by:

- the type of material
- the subgrade moisture regime
- the sensitivity of the subgrade to moisture changes

Of these factors, the last is of particular importance at Melton. The extensive expansive clay soils have the potential to appreciably change volume with changes in moisture. This swelling or shrinkage of expansive clays is rarely uniform and the resulting distortion can severely damage an otherwise sound pavement.

Volumetric changes can be minimised by:

1. Minimising changes in the moisture content, eg. compacting the subgrade at a moisture content close to the equilibrium moisture content, and maintaining it at this level until covered by the pavement.
2. Placing sufficient weight of material over the subgrade to counteract the swelling pressure.
3. Modifying the subgrade to reduce its sensitivity to moisture by the addition of a stabilising agent such as lime.

The RCA have extensively tested the Melton soils for the construction of the Western Freeway Melton By-pass and opted for lime stabilization as a suitable soil treatment. The addition of lime (approx. 4\%) to the subgrade material greatly improves the roadmaking properties.

The pavement thickness desigri procedure described by the RCA is based on an empirical reiationship between:

- the strength of the subgrade in terms of its CBR (section 3.11.3), and
- the pavement thickness required over the subgrade to carry the predicted traffic loading at the desired level of performance..

AFPENDIX I
 SIMPLE KRIGING EXAMPLE
 (Modified from Farrelly, 1985)

SIMPLE KRIGING EXAMPLE

Assuming isotropic and stationary semi-variances, all that is model and the arrange the kriging weights is the semi-variogram point, area or volume being estimated. points with respect to the

Take the following area, with data points distributed as shown :

Given the semi-variogram for the whole area :

$$
\begin{aligned}
& \left.\gamma(d)=18\left[\frac{3 d}{2 \times 200}-\frac{1}{20 d^{3}}\right]^{300^{3}}\right]+2 ; \quad \text { for } \quad d \leqslant R \\
& \gamma(d)=20 \text {; for } d>R
\end{aligned}
$$

The point χ_{0} is estimated using the weighted average :

$$
\begin{aligned}
& \hat{X}_{0}=\lambda_{1} \chi_{1}+\lambda_{2} \chi_{2}+\lambda_{3} \chi_{3}+\lambda_{4} \chi_{4} \\
& \text { where } \quad \lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}=1
\end{aligned}
$$

In matrix form, the solution to the set of kriging equations is
written:

$$
\left[\begin{array}{c}
\lambda_{1} \\
\lambda_{1} \\
\lambda_{1} \\
\lambda_{1} \\
\mu
\end{array}\right]=\left[\begin{array}{lllll}
\gamma_{1,1} & \gamma_{1,2} & \gamma_{i, 3} & \gamma_{1,4} & 1 \\
\gamma_{2,1} & \gamma_{2,2} & \gamma_{2,3} & \gamma_{2,4} & 1 \\
\gamma_{3,1} & \gamma_{3,2} & \gamma_{3,3} & \gamma_{3,4} & 1 \\
\gamma_{4,1} & \gamma_{4,2} & \gamma_{4,3} & \gamma_{4,4} & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right]^{-1} \times\left[\begin{array}{c}
\gamma_{0,1} \\
\gamma_{0,2} \\
\gamma_{0,3} \\
\gamma_{0,4} \\
1
\end{array}\right] .
$$

where

$$
\begin{aligned}
& \gamma_{1,1}=\gamma_{\left(a_{1,1}\right)}=\gamma(0)=0 \\
& \gamma_{1,2}=\gamma_{\left(d_{1,2}\right)}=\gamma(70.7)=11.1 \\
& \gamma_{1,3}=\gamma_{\left(d_{1,3}\right)}=\gamma(50)=8
\end{aligned}
$$

The solution to the example itc.

Thus our estimate is :

$$
\chi_{0}=.51 \chi_{1}+.03 \chi_{2}+.09 \chi_{3}+.37 \chi_{4}+\epsilon
$$

with the variance of ϵ, the kriging variance, being :

$$
\sigma_{k}^{2}=\mu+\sum_{i=1}^{n} \lambda_{i} \gamma_{i o}=11.5
$$

This is a measure of estimation error, and the ability to derive such a measure is onc of the advantages of kriging. Another derive adyantage is the atutomatic down-weighting of iging. Another direction in which we already nave ghting of samples in a effect can be seen in our exame information. This iscreen than χ_{3}, even though it is closer to χ_{0}. χ_{2} has a lower weighting

APPENDIX III
BUILDING REGULATIONS FOR FOOTINGS AND FOUNDATIONS EXTRACT FROM VBR (1983)

GROUP VI-STRUCTURAL PROVISIONS PART32-FOUNDATIONS
32.1

FOUNDATIONS: ASSESSMENT OF ADEQUACY

32.2 The adequacy of foundations shall be based on appreved -
(a) well established and relevant local knowledge and experience of foundution conditions in the vicinity of the proposed building; or
(b) tests on the foundation materials.

32.3

ALLOWABLE BEARING PRESSURES-GENERAL

32.4 The bearing pressure on the foundation of a building shall not exceed the values given in Regulation 32.5 unless-
(a) an in vestigation of the foundations has been conducted and the building surveyor is satisfied in the light of the report on that investigation, that higher bearing pressures are justified;
or
(b)
(b) an investigation of the site has been conducted under AS 1726 and the bearing pressures are based on the information
obtained from that investigation.

ALLOWABLE BEARING PRESSURES

Application of Regulation:

32.5 (1) This Regulation shall only apply where the class and description of the soil or rock adopted for the purposes of this Regulation and the allowable bearing pressures adopted for the purposes of this Regulation are stated on the plans subinitted for a building approval.

Reference to Tables

(2) The allowable bearing pressures for use pursuant to this Regulation shall be those prescribed in-
(a) Table 32.5 A ;

Part 32, Page 1

(h) Table 32.5 B ; or

(c) Table 32.5C-
as required to be construcd in accordance with the Notes to those
Tables.
Determination of soil description
(3) In determining an appropriate soil description for use pursuant to this Regulation, the designer shall take account of seasonal moisture
conditions

Pad or strip footings near houndaries
(4) Where any pad or strip footing is on or within 1 m of the boundary of the alloment other than a street alignment, the allowable bearing pressure shall be two-thirds of the value otherwise prescribed in this
Regulation. Rcgulation.

> TABLE 32.5A

Notes:
A. Reclangular frolings with width to length proportions in the ratio I: 5 or greater de deemed to te strip footings.
B. For rectangular footings with a width to length ratio between $1: 1$ and $1: 5$ the allowable bearing picssure may be interpolated between those prescribed for strip footings
and pad footings.
C.
C. Where a footing is located below ground surface the allowable beaing pressure may be incrensed by $\leq \mathrm{kPa}$ for each 300 mm in distance which the base of the footing is
below the ground surface.
D. (I) For surface.
(a) 'Very sofl clay and this Table the following interpretations shall apply: to a depth or 100 mm by the clenched fist (h) 'Soft clay and soft sill' meane soil ed fist
of 50 mm by the thumb.
c) 'Firm ciay' means soil
'Firm ciay' menns soil which may with moderate effor be penetrated to a
depilt of 50 mm by the thumb.
Part 32, Page 2

STM-73 \square
(d) 'Siff clay' means soil which may readily be indented by the thumb, but penetrated by the thumb only with great effort.
(c) 'Very siff clay' means soll which may be readily indented by the thumbnail.
(f) 'Hard clay' means soil which may be indented by the thumbail but only with great difficully.
(2) For the purposes of these interpretations clay shall include sily or sandy clays.

TABLE 32 5B
FOOTINGS ON NON-COHESIVE SOILS

FOOTINGS ON NON-COHESIVESOILS			
Description	Allowable Bearing Prossure in kPa fora Footing locutedat Ground Surfact	Increase in fllowable Bearing' Pressures in hPa for every 300 mm of Depth of Boxe of Pooting Rew Ground Sirffucie'	Haximmm Alowable Bcaring Prexsure in kPa bnder any Conditions
(1)	(2)		(4)
Loose sand or gravel	50w	15	100
gravel	150w	40	250
Dense sand or gravel	350w	100	550
Very dense sand or gravel	600 w	150	700

Notes:
A. For the purpose of this Table, w is the least plan dimension of the footing in metres.
B. If, in the opinion of the building surveyor, the water table is likety to rise to a level the distance of which below the base of the footing is not more than w, the allowable tearing pressure and maximum allowable bearing pressure shall be one hatf of that otherwise prescrited.
C. For the purposes of this Table, the following interpretations shall apply:
(a) 'Loose sand or gravel' means sand deposits readity removable by slovelling only and into which a sharp pointed wooden post 50 man squatre can easily be driven with a hammer not eaceedinus k k.
(b) 'Medium sand or gravel' means sand or gravel deposies removable by vigoraus shovelling and into which a sharp pointed wooden post 50 mm square can be driven with a hammer not excecding 5 kg with some dithe wliy.
(c) Dense sand or gravel' means sand or gravel deposits requiring piching for temoval, and offering high resistance to penetration by exeavating tools.
(d) 'Very dense sand or gravel' means gravel deposits requoring hard picking for removal, and offerine hard resistance to disturbance by excavating tools.

GROUP VI-STRUCTURAL PROVISIONS PART 33-FOOTINGS NOT ON PILING OR CAISSONS

PROVISION OF FOOTINGS

33. 1 Suitable footings shall be provided where necessary to reduce the tatensity of the pressure of the building on the foundutions.

DESIGN OF FOOTINGS

33.2 Footings, including slab-on-ground footings, shall be designed and constructed so that any relative movements of separate footings and of different parts of any one footing under loading, or of a footing and any olher element of the substructure will not impair the stability of or cause significant structural damage to the superstitucture.

DEEMED TO COMPI.Y

Scope

33.3 (1) This Regulation shall apply to concrete strip or pad footings wherc-
(a) the building does not contain more than 4 storeys:
(b) the area of any storey of the building is not greater than $600 \mathrm{~m}^{2}$; and
(c) the bearing pressure exerted by the fooling does not exceed the value prescribed in Regulation 32.4 .

Construction and proportions of footings designed by prescribed allowable bearing pressure
(2) A footing designed and constructed in accordance with this Regulation shall be deemed to comply with Regulation 33.2 if it-
(a) is of reinforced concrete constricted having a compressive strength at 28 days of not less than 20 MPa , as determined in accordance with AS 1480;
(b) has a depth of not less than-
(i) the horizontal projection of the footing at right angles to the face of the wall or the column it supports (as illustrated in Figure 33. 3); or
(ii) $200 \mathrm{~mm}-$
whichever is the greater;

Horizontal Projection of footing FIGURE 33.3
(c) in the case of a pad footing. contains not less than 0.15 per cent or the cross-sectional area of the footing. as designed, as reinforcement in cach direction near the bottom face of the footing, with a minimum cover of 50 mm ;
(d) in the case of a strip footing. contains not less than 0.15 per cent of the cross sectional area of the footing as designed as longitudinal reinforcement with a minimum cover of 50 mm , half of which shall be placed in the top third and half in the bottom third of the footing; and
(c) has reinforcement in strip footings and pad footings lapped for continuity-
(i) at splices-for a distance of not less than 500 mm :
(ii) at T intersections-for the full width of the layer;
iii) at corners where fabric strips are used as reinforcement-for the full width of the fabric layer: and
(iv) at corners where bars are used as reinforcement-by a bent lap bar of 500 mm each leg. placed in each layer of rinforcement near the outer face of the corner.

DEEMED TO COMPLY

Application of Regulation

33.4 (i) Any footing of a Class I building or a building of another class which has a uniformly distributed live load not exceeding 3 kPa when calculated in accordance with AS 1170 which is construted in accordance with the relevant provisions of this Regulation and

Part 33. Page 2
\qquad
$+x+m$
\qquad

Regulations. 33.5 to 33.9 shall be deemed 10 comply with the requirements of Regulation 33.2 except where-
(a) by reason of-
(i) the nature of the foundation; or
(ii) the design of the building; or
(iii) any other relevant considerations-
the building strevejor is of the opinion that any such footing would hot be adequate in the particu lar case; or
(b) the building-
(i) contains more than 2 storeys; or
(ii) 'has a wall, which, excluding any gable, exceeds 7.2 m in height; or
(iii) will contain a concrete floor other than a slab-onground.

Concrete strength

(2) Concrete used in footings shall have a compressive strength at 28 days of not less than 20 MPa , determined in accordance with AS 1480

Foundation classification

(3) The classification of the foundation of any site on which footings are to be constructed shall be in accordance with the "Classifcation of Expansive Behaviour of Melbourne Soils for Domestic Construction" published by CSIRO and AEBIRA.

Areas not covered by publication

(4) In areas outside those shown in Figure 3 of the publication referred to in sub-regulation (3) the site on which footings are proposed to be constructed shall be similarly classified by adopting, where practicable, the principles stated in that publication and taking into account experience or knowledge of local or traditional building construction practices.

Drawings to include foundation classification

(5) The drawings referred to in Regulation 8.2 (2) shall include the foundation classification atopted pursuant to this Regulation and shatl be confirmed to the salisfaction of the building surveptor on the site on which the footings are proposed to be constructed.

FOOTINGS FOR STUMIPS

General requirements

33.5 (1) Every footing for stumps shall comply with the following:
(a) The size of concrete footings for stumps shail be in accordance with AS 1684 .
(b) The bearing areas of footings for stumps which support a wall sheathed with cement-sand facing tiles, shall be double those prescribed for a timber-framed wall in AS 1684.
(c) The footings shall be founded at a depth of-
(i) in the case of sites classified as stable in accordance with Regulation 33.3 , not less than 450 mm ; or
(ii) in the case of sites classificd as intermediate in accordance with Regulation 33.3, not less than 700 mom; or
(iii) in the case of sites classified as unstable in accordance with Regulation 33.3 , not less than 1 m .

Concession

(2) Notwithstanding paragraph (c) of sub-regulation (1), the building sturevor may permit the footings for stumps to be founded at a depth of less than 450 mm if he is satisfied by reason of experience or local knowledge that such a depth would be adequate for the structural stability of the buidding in the case of-
(i) the re-stumping of or allerations to an existing building;
(ii) rock foumdations; or
(iii) a building in which walls of stud-framed and sheeted construction are supported on stumps.

Excavations

(3) Excavations for footings for stumps shall be-
(a) properly backfilled with approved material; and
(b) compacted in an approved manner.

STRIP FOOTINGS

Reinforcement

33.6 (1) Reinforcement in strip footings shatl-
(a) be equally distributed in two layers. one near the top and one near the bottom of the footing;

Part 33, Page 4
b) have a concrete cover of not less than 50 mm at any part; and
(c) be laid continuously, each layer being lapped-
(i) at intersections-for its full width;
(ii) at splices-for not less than 500 mm ;
(iii) at corners where fabric strips are used as reinforcement-for the full width of the fabric layer
(iv) at comers where bars are used as reinforcement-by a bent lap bar of 500 mm each leg, placed in each layer of reinforcement near the outer face of the corner; and
(v) at steppings, as shown in Figure 33.6

Design generally

(2) Strip footings constructed of concrete shall-
(a) have a width and depth in accordance with Table 33.6;
(b) if stepping is necessary, comply with one or more of the methods shown in Figure 33.6 and have level botioms between steppings;
(c) be reinforced in accordance with Table 33.6 and Figure 33. 6 ; and
(d) be founded on soil or rock having an allowable bearing pressure of not less than 100 kPa .

Reduced footing depth permissible

(3) Where a strip footing designed and constructed pursuant to this Regulation is to rest wholly or parly on a floater or rock outcrop, the depth of the strip footing in the vicinity of the floater or rock outcrop may, subject to sub-regulation (4) be reduced to not less than twothirds of the depth otherwise prescribed by this Regulation

Reinforcement in reduced footing depth

(4) Where the depth of a strip footing is reduced pursuant to subregulation (3), the reinforement in the section of the strip footing of reduced depth-
(a) shall be double the amount of that prescribed by Table 33.6 and
(b) shall extend at least 500 mm beyond the section of strip footing of reduced depth

TABLE 33 :

MINIMUM DIMENSIONS AND REINFGRCEMENT FOR STRIP FOOTINGS

		Fowrings			AlrernativeReinforerment	
		Hiwht	Depth			
		H'amm)	$n(m m)$	H(men)		
$\underline{ }$	(2)	(3)				
				(3)	(6)	(7)

MASONR Y VENEER, TMMER FRAMED. METAL FRAMED OR SINGIE LEAF MASONRY
WALLS

Slahte		${ }_{37}^{39}$	${ }^{375}$	450		
Iniemersitianc		${ }_{378}$	529	${ }_{6} 400$	${ }_{3}^{2}$	${ }^{3}$
1 Inuatre					${ }^{3}$	8:
	${ }_{\text {T\%o }}$	375	${ }_{6}^{675}$	${ }_{750}^{750}$	3	6

CAVITY OR DOUBLE LEAF MASONRY WALLS

*Reinforcement is to be provided in two equal layers.

STRIP FOOTING
illustration totable 33.6

step not greater than 200 mm

METHOD A

FIGURE 336 STEPPED FOOTINGS

SLAB-ON-GROUND
Reinforcement in the slab-or-ground beams
33.7 (1) Reinforcement in the beams in shab-on-ground shall-
(a) be placed near the botom of each beam:
(h) have a concrete cover of not less than 50 mm at any part; and
(c) be lapped-
(i) at intersections-for its full width;
(ii) at splices-for not less than 500 mm ;
(iii) at corners where fabric strips are used as reinforecment-for the full width of the fabric layer;
(iv) at corners where bars are used as reinforcement-by a bent lap har of 500 mm each leg, placed in each layer of reinforcement near the outer face of the corner; and (v) at steppings-as shown in Figure 33.6.

Reinforcement fabric in slab-on-ground
(2) Reinforcement fabric in slab-on-ground shall-
(a) be placed in the upper half of the slab, with a concrete cover of not less than 25 mm at any part:
(b) be lapped for a distance of not less than 225 mm ; and
(d) be supported by bar chairs at spacings of not more than 1.2 m in cither direction.

Requirements generaliy
(3) Every slat-on-ground shall comply with the following:
(a) Top-soit contaming significant amounts of organic rnatter shall be removed from the area on which the slab is to rest.
(b) Edge beams of the slab shall be founded on soil or rock having an allowabie bearing pressure of not less than 100 kla .
(c) The slab shall be founded on soil or rock having an allowable bearing pressure of not Iess than 30 kPa .
(d) The slab shall be provided with a vapour barrier which shail-
(i) consist of a sheet of polyethylene not less than 0.2 mm in thickness:

Part 3.3. Page 8
(ii) be placed beneath the slab so that the bottom surface of the slab is entirely underlaid;
(iii) be continued around the edge beams to at least ground level or to the bottom of the edge recess, whichever is
the lower; the lower;
(iv) be lapped at all joints for a distance of not less than 200 mm; and
(v) be taped around pipes which penerrate the slab
(b) The dimensions and reinforcement of the edge beams shall be not less than those prescribed in Table 33.7A and as illustrated in Figure 33. 7 A
(f) Edge recesses shall be provided for a masonry cavity wall or masonry veneer construction and shall-
(i) have a depth of not less than 50 mm and any part of the edge beam below any such recess shall have a depth of not less than 150 mm ; and
(ii) be constructed in the manner illustrated in Figure 33.7A.

FIGURE 33.7a
TABLE 33.7A
Minimum dimensions and reinforcement of edge beams

Founcition Classationion und Disiding Hezht		Ahernuthe' Butum Reinforcememt	
		Nimbtr of Cl2. Slo or Y/2 Burs or Mas: Weras offochi Fubric	Number of Afoin Hires of 447 M Fubric
(1)	(2)	[(3)	(4)
Stable	\cdot		
-one sturey	300×300		
-inostoreys	400×400	3	3
Intermediate -une stores -luostoreys			
	300×400		
	400×400	4	0°

Parl 33. Page 9

(g) On completion of the building the top surface of the slab shall
be at a height above the adjoining ground level of-
(i) 75 mm , in the case of a slab located adjacent to a drained
and paved area; and paved area;
(ii) 100 mm , in the case of a slab located on a sandy, well drained sile, or
(iii) 150 mm , in any other case.
(h) Stiffening beams shall-
(i) be constructed in accordance with the dimensions prescribed in Table 33.7 B and in the manner illustrated in Figure 33. 7B;
(ii) be reinforced in accordance with the provisions of Table
33.7 B ; and
(iii) be founded on soil or rock having an allowable bearing pressure of nol iess than 30 kPa ;

FGGURE 33.7日

(i) A support shall be provided under any imernal wall in the manner prescribed by Part 1 of Table 33.7c if the wall is not located within 300 mm of the centre-line of a stiffening beam.
(i) A beam providing support for an internal irall in accordance with Part I of Table 33.7 c shall be-..
(i) constructed in accordance with Part 2 of Table 33.7b for stiffening beams and in the manner illustrated in
Figure 33.7 B ;
(ii) if the wall is a loadbearing wall, be founded on soil or rock having an allowable bearing pressure of not less
than 100 kPa and than 100 kPa ; and
(iii) if the wall is a non-loadhearing wall, be founded on soil or rock having an allowable bearing pressure of not less than 30 kPa .

TABLE 337 C
PART 1-SUPPORTS FOR VARIOUS TYPES OF INTERNAL WALL

A"undir of Sture'ys(1)	Tine of Wull Constration (2)	Inithal 1 aill	
		Leadhearng (3)	Non-hadbearing (4)
one two	timber or metal timber or metal	no requirement beam required	no requirement additional slab reinforcement required
one tro	miasonry	additional slab reinforcement required	no requitement
(no	masone	bam required	beam megured

ded in two cqual layers.
k) additional slab reinforcement providing support for an shal!- \quad accordance with Part 1 of Table 33.7 C
(i) be not less than 800 mm wide;
(ii) be positioned centrally under the wall in the lower part of the slab with a conerete cover of not less than 30 mm ;
(iii) be placed in the manner illustrated in Figure 33.7 C ; (iv) comply with the provisions of paragraph (l);

(l) cuery slab shall-
(i) in the case of a slab resting on soil classified in accordance with Regulation 33.3 as stable be or $\because \quad$ with F72 mesh or bars of equivalent strength:
(ii) in any other case, be reinforced with F82 mesh or bars of equivalent strength;
(m) A slab shall be not less than 100 mm thick.
(11) Pipes providing heat to a slab shall not be embedded in a slab less than 125 mm ihick

Part 33. Pape 12
(o) Where pipes are to be emtedded or tecesses provided in the
slab, the slab shall be thisened in an on slab, the slab shall be thitened in an approved manner to
consure that there is no tos ensure that there is no loss of strengit.

Reduced footing depth permissible

(4) Where a beam of a slab-on-ground, designed and purstant to this Regulation, is to rest wholly or party a constructed rock outcrop, the depth of the beam in the vicinity of the foater a fler or ontcrop may, subject to sub-regulation (5), be reduced to not less iba o-hirds of the depth otherwise prescribed by this Regulation:
Reinforcement in reduced footing depth
(5) Where the depth of a beam is reduced pursuant to sub-regulation (4), the reinforcement in the section of the beam of reduced depth-
(a) hall be double the amount of that prescribed by this Regulation; and
(b) Shall extend at least 500 mm beyond the section of strip footing or bean of reduced depih.

FOOTING SIABS

33.8 A footing slab system designed and constructed pursuant to this Regulation shall comply with the following:
(a) Except where by reason of experience or local knowledge the building surveyor permits otherwise oral knowledge Regulation 33.3 as stable.
confguration of the system shall conform with-
(ii) any other methods illustreted in Figure 33.8; or
(ii) any other method not less effective than the methods
so illustrated;

S.R. 273

(c) The footing part of the system shall comply with the provisions of Regulation 33.6 as if it were a strip footing.
(d) The slab par of the system shall comply with the provisions of Regulation 33.7 (3) (other than paragraphs (b), (d) (iii), (c) and (f)) as if it were a slab-on-ground.
(e) Where, in the design and construction of a footing slab system, filling is restrained by an external wall and the filling is greater than 600 mm in depth, the external wall shall be designed by a qualified engineer and constructed in
accordance with that design.

FOOTINGS ADJOINING BOUNDARIES: PERMISSIBLE PROJECTIONS
33.9 Notwithstanding anything in Part 15, a footing may(a) support a part) noul; and
(b) extend beyond the boundaries of a street aligmmen-
(i) to a distance of not more than 300 mm where the lighest projecting part of the footing is at a depth of not less than 450 mm but is less than 3 m below the ground level; or
(ii) to a distance of not more than 1 m where the highest projecting part of the footing is at a depth of 3 m or more below the ground level.

SECTION 2. SITE CLASSIFICATION

2.1 DESIGNATION. Site classes shall be desigmated as follows:

Foundation	Character	Class
Sand and rock Silt and some clay	Stable	$\hat{\mathrm{S}}$
Moderately reactive clay Highly reactive clay Extremely reactive clay	Reactive	M H E
Sand Material other than sand \qquad	Controlled fill	$\begin{aligned} & A \\ & A t o[\end{aligned}$
Mine subsidence Uncontrolled fill Landslip Soft Collapsing soils	Problen	P

2.2 CLASSIFICATION PROCFDURE. All site classifications shall be based on one or more of the
following:
(a) Assumption of soil type without any site investigation from a classification map or from well established local knowledge provided that soils are known to be consistem over large areas. The soil type and site conditions shall be checked by a site visit before construction.
(b) Sitc investigation to identify soil profite using one or more boreholes or test pits in the site or a number distributed over a subdivision.
(c) Site investigation using a penetrometer, for sand sites.
(d) Site investigation including soil sampling and appropriate tests.
(c) Clause 7.2 for South Australia.

Where the Building Authority has designated a presumed site classification or simplified sysuem based on a map of site classifications, hisis may be used but shall not prectude the adoption of a less severe classification if supported by a site investigation and a classification
in accordance with this Section.

2.3 STABLE AND REACTIVE SITES.

2.3.1 Sand or rock site. Sand sites (to depths in

 excess of the depths of influence as defined in Appendix D or to rock) or rock sites, as defined in the standarel, shall be classified as Chass A.2.3.2 Silt sites. Silt sites as defined in the standard or mixtures of sand and silt (to deptiss of influence as defined in Appendix D or to rock) shall be classified
2.3.3 Clay sites. In addition to the general requirements of Clause. 2.2, the procedure for the classification of a clay site shall include one or more of the
following methods:
(a) Visual assessment of the site and interpretation of knowledge of existing masonry house walls on light strip footings which have existed for not less than 15 years in a similar soil assessed in accordance with Table 2.1.
(b) Identification of the soil profile and a classification in accordance with Appendix C or from established data on the performance of the soil profile.
(c) Compuation of the predicted surface movement, y_{s}, in accordance with A ppendix D, with the fol-
lowing limits:

Surface Movement	class
$y_{s} \leqslant 20 \mathrm{~mm}$	S
$20 \mathrm{~mm}<y_{1} \leqslant 40 \mathrm{~mm}$	M
$40 \mathrm{~mm}<y_{s} \leqslant 70 \mathrm{~mm}$	H
$y_{5}>70 \mathrm{~mm}$	E

2.3.4 Reduction of reactive site classification. The effect of the treatments below may be taken into account to improve the site classification:
(a) Removal and replacement of reactive clay with a non-reactive material and protection of any remaining reactive clay from moisture clanges; or
(b) Covering the site with a layer of compacted stable material preferably well in advance of con-
struction.
2.3.5 Soft foundations. Soft foundations are classiTied as Ciass P where the allowable bearing pressure at foundation level is less than the foliowing values
as appropriate:
(a) Under strip or pad footings $\ldots \ldots . .100 \mathrm{kPa}$.
(b) Under beams and slab panels for all slabs, except that 100 kPa is required under the edge footing of footing slabs without ties 50 kPa . Allowable bearing pressures shall be assessed in accordanec wilh Appendix 13 .

NOTE: Inadectuate allowable beafing persure is not common

TABLE 2.1
SIMPILE CIASSIFICATION OF CLAY SITES
(Dumuge culegorics are piven in applendix A)

Rate Calcgory 0 or 1 dathage	Clussilicution of sile
Ofoch Category I damage but rarely Category 2 danage. Caterory 1 damane is very rate	S
(The site may show surface cracking in dry periods.)	M
Often Calegory I or 2 damage with nceasional examples of Caicgory 3 damage Girciund	
(ofien Category 3 or more aevers and and dry periods.)	II
(Deep ground surface cracking occurs in dry sprefls.) well known tor damage lo houscs and structurs.	E

2.4 CONTROLLED FILL SITES.

2.4.1 Controlled sand fill on sand sites. Controlled sand fill over sand site may be classified as a Class A
site. site.
2.4.2 Shallow controlled fill. The effect of controlled fill up to 800 mm deep for sands and gravels and up to 450 mm deep for clay may be disregarded in the site classification.

AS 2870-1986
2.4.3 Other controlled fill sites. Other controlled fill sites may be classified as Class S sites provided that the settlement and reactivity of boll the fill and the underlying natural soil complies with Clause 2.3.3(c).
2.5 PROBLEM STTES. Where the site includes mine subsidence, uncontrolled fill, landslip conditions or soft soil (see Clause 2.3.5), the site shall be classified as a problem site (Class P) and a footing system shall
be designed in accordance with Section 5 .

APPENDIX C

SITE CLASSIFICATION BY SOIL PROFILE IDENTIFICATION

In some areas, where sufficient data has been established, an assessment of the reactivity of a clay profile may be associated with the descriptions in 7ables $\mathrm{Cl}, \mathrm{C} 2$ and C3 provided that the clay on the site is identified as belonging to the profile described in the table. In neighbouring regions, the table may be used if soil types mates are similar
Where a range of classifications is given in the tables generally, the typical values should be used. A higher or lower classification may be required if the moisture condtions or soit profite on the site differ markedly from those normally expected.

1. Demb af dity layer refers to the thickness of the clay in the proffic. Shallow may be taken to mean less ham 0.6 midepth or teactive clay.
2. The lables can unly le unet in conjunction will a site investigation where variable soil conditions

 alter native elassificanion procedure should be wsede soil profile is no listed in the lable then seme
3. Whete a range is given lic chasifict should be used.

4. The soil type notation in Tabloc C 2 is taken Froun Buleni of the reactivity of the soil.
 types. The Category E1 has been introdheced primarily for on the napen given in that report on soil from highly to exticmely reactive.

TABLE C1
CLASSIFICATION BASED ON LOCATION AND TYPICAL PROFILE-VICTORIA

Examples	Chassification
Micthortme and District	
Bansaltic clays-	
$\leqslant 0.6 \mathrm{~m}$ deputiol clay layer	
> 060 mm deph of chay hayer	$1 i$
Non-basaltic clays-	
(Including silurian and devonian	
residual chay and amaternary	
allurial clays	
$\leqslant 0.6 \mathrm{~mm}$ deptio of clay layer	S
> 0.6 ma depht of chioy liyer	N
ertiany sediments	
< 1 ml sand over clay astess on the dacis	\wedge
of depth of clay layer-	
$\leqslant 0.6 \mathrm{ll} \mathrm{\prime}$	
$>0.6 \mathrm{ml}$	$\stackrel{\rightharpoonup}{M}$
Heswernmole	
Alluvial clays	51011
I/orisfun and district	
Gircy brown cracking clays	11.105
Oectong	10.
Basaltic clays-	
$\leqslant 0.6 \mathrm{mdep} / \mathrm{l}$	
$>0.6 \mathrm{~mm}$ deph	N
$W_{\text {anam }}$ Fonds formation	11
Teriary sediments	M10it
Millip Island	
basaltic clays	
Alluvital clays	11
Shrpperrom atad Districe	M
Puaternary alluvial ctay	Stoit

NOTE: The reactivity of the tertiary and siluriatn clays is vaitable, and some areas of high reactivity have been identified. Whitht the above clasifications have penerally been shown as satistaciory, particubaly when combined with the requirements of Apratiachory, panticulanly carried out. lowal expericnce slould be considered when classilying in site.

[^0]: KEYWORDS: Engineering Geological Mapping, Medium Scale, Soils, Maps, Engineering Geology, Engineering Soils, Kriging, Urban Planning, Hydrogeological Maps

[^1]: Similarly, the shallow soils in the north-west area would represent the most recent lava flow from the eruption point at 'Melton Park'. The thicker soils south and east of this flow would represent the soils in the older flows.

[^2]: (u) - upper aquifer (1) - Lower - Pywheitjorrk; X - Yangardook

[^3]: (i) Function of the road
 (ii) Traffic loading
 (iii) Subgrade conditions
 (iv) Properties of the available pavement materials
 (v) Drainage conditions

[^4]: KEYWORDS: Engineering Geological Mapping, Medium Scale, Soils, Maps, Engineering Geology, Engineering Soils, Kriging Urban Planning, Hydrogeological Maps

[^5]: (i) Function of the road
 (ii)

 Traffic loading
 (iii) Subgrade conditions
 (iv) Properties of the available pavement materials
 (v) Drainage conditions

