### DEPARTMENT OF PRIMARY INDUSTRIES

1

1111

1 100

17 lin

7 11

W

# VicGCS

Victorian Geological Carbon Storage Initiative

# Geological Carbon Storage in the Gippsland Basin, Australia Containment potential





2

11 #1

### DEPARTMENT OF PRIMARY INDUSTRIES

# VicGCS

# Victorian Geological Carbon Storage Initiative

Geological Carbon Storage in the Gippsland Basin, Australia: Containment Potential

L.M. GOLDIE DIVKO, G.W. O'BRIEN, P.R. TINGATE & M.L. HARRISON

VicGCS Report 1 April 2009 Published by the Department of Primary Industries, Minerals and Petroleum Division, 1 Spring Street, Melbourne, Victoria 3000 Australia April 2009

© The State of Victoria, 2009 GeoScience Victoria

This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the *Copyright Act 1968*.

Authorised by the Victorian Government, 1 Spring Street, Melbourne, Victoria 3000 Australia

#### **Bibliographic reference:**

GOLDIE DIVKO, L.M., O'BRIEN, G. W., TINGATE, P.R. & HARRISON, M.L., 2009. Geological Carbon Storage in the Gippsland Basin, Australia: Containment Potential. VicGCS Report 1, Department of Primary Industries.

ISSN 1323 4536 ISBN 978-1-74217-430-3 (print) ISBN 978-1-74217-431-0 (CD-ROM) ISBN 978-1-74217-432-7 (online)

#### This report may be obtained from:

Business Centre Department of Primary Industries 16th Floor, 1 Spring Street Melbourne, Victoria 3001

#### For further technical information contact:

Dr Louise Goldie Divko GeoScience Victoria Earth Resources Division Department of Primary Industries PO Box 4440 Melbourne, Victoria, 3001 louise.goldie-divko@dpi.vic.gov.au

#### Website: www.dpi.vic.gov.au

#### Acknowledgements:

The Energy GeoScience Group produced this report. Louise Goldie Divko and Geoff O'Brien prepared the text with contributions from Peter Tingate and Michael Harrison. Tom Bernecker originally prepared 'the tectonic evolution, stratigraphy and depositional history of the Gippsland Basin': these sections were revised for this report. Eddie Frankel drafted all figures; the authors are very grateful for his professionalism and efficiency. The MICP analysis was undertaken at ACS Laboratories in Perth. Keyu Liu conducted QGF and QGF-E analysis at CSIRO Petroleum in Perth. Leakage and seepage data was compiled by Michael Harrison and 3D migration modelling was undertaken by Peter Tingate and Natt Arian using Petromod 10.

#### **Cover Image:**

This image is a three-dimensional diagrammatic representation of the top surface of the Latrobe Group showing oil (green) and gas (red) accumulations, and the overlying regional top seal: the Lakes Entrance Formation. The view is from the sub-surface offshore Gippsland Basin looking towards the northwest onshore section of the basin and the Strzelecki Ranges in the distance.

#### Disclaimer:

This publication may be of assistance to you but the authors and the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaim all liability for any error, loss or other consequence which may arise from you relying on any information in this publication.

For more information about DPI visit the website at www.dpi.vic.gov.au or call the Customer Call Centre on 136 186.

If you would like to receive this information/publication in an accessible format (such as large print or audio) please call the Customer Service Centre on: 136 186, TTY: 1800 122 969, or email customer.service@dpi.vic.gov.au

## Contents

| Exe | cutive | Summary                                              | 5  |
|-----|--------|------------------------------------------------------|----|
| 1   | Intro  | 6                                                    |    |
| 2   | Reg    | 7                                                    |    |
|     | 2.1    | Tectonic Evolution of the Gippsland Basin            | 7  |
|     | 2.2    | Stratigraphy and Depositional History                | 10 |
| 3   | Seal   | 12                                                   |    |
|     | 3.1    | Previous Work                                        | 12 |
|     | 3.2    | Seal Thickness and Geometry                          | 13 |
|     |        | Lakes Entrance Formation                             | 13 |
|     |        | Latrobe Group                                        | 14 |
|     | 3.3    | Mercury Injection Capillary Pressure (MICP) Analysis | 17 |
|     | 3.4    | Seal Capacity Results                                | 17 |
|     |        | Lakes Entrance Formation                             | 17 |
|     |        | Gippsland Limestone                                  | 17 |
|     |        | Latrobe Group                                        | 25 |
| 4   | Con    | tainment Evaluation                                  | 26 |
|     | 4.1    | Offshore Gippsland Basin                             | 26 |
|     |        | Central Deep                                         | 26 |
|     |        | Northern Terrace                                     | 31 |
|     |        | Southern Terrace                                     | 33 |
|     |        | Northern Platform                                    | 33 |
|     |        | Southern Platform                                    | 33 |
|     | 4.2    | Onshore Gippsland Basin                              | 33 |
|     |        | Lake Wellington Depression                           | 33 |
|     |        | Seaspray Depression                                  | 34 |
|     |        | Alberton Depression                                  | 34 |
|     |        | Lakes Entrance Platform                              | 34 |
|     |        | Baragwanath Anticline                                | 34 |
| 5   | Con    | clusions and Future Directions                       | 38 |
| Ref | erence | s                                                    | 39 |

| Appendix 1                                                                                                                                                                                           | A1 - 1 |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|--|--|--|
| Lakes Entrance Formation tops and thicknesses identified in onshore and offshore wells, Gippsland Basin                                                                                              |        |  |  |  |  |  |
| Appendix 2                                                                                                                                                                                           | A2 - 1 |  |  |  |  |  |
| ACS Laboratories (A) Interpreted Capillary Pressure charts, (B) Capillary Pressure plots and (C) Pore Size Distribution plots from Mercury Injection Capillary Pressure analysis of 37 core samples. |        |  |  |  |  |  |
| Appendix 3                                                                                                                                                                                           | A3 - 1 |  |  |  |  |  |

Values used in the calculation of  $\mathrm{CO}_{\rm 2}$  column heights

### List of figures

| 2.1 | Structural elements map of Gippsland Basin, showing distribution of oil and gas fields                | 8  |
|-----|-------------------------------------------------------------------------------------------------------|----|
| 2.2 | Stratigraphic column for the Gippsland Basin                                                          | 9  |
| 3.1 | Lakes Entrance Formation thickness and top of Latrobe Group depth structure map                       | 15 |
| 3.2 | Sedimentary facies identified at the base of the marine Lakes Entrance Formation                      | 16 |
| 3.3 | Thickness of the Kate Shale (as derived from well data)                                               | 18 |
| 3.4 | Retention capacities for CO <sub>2</sub>                                                              | 21 |
| 3.5 | Retention capacities for gas                                                                          | 22 |
| 3.6 | Retention capacities for oil                                                                          | 23 |
| 3.7 | Relationship between the thickness of the Lakes Entrance Formation<br>and its MICP retention capacity | 24 |
| 3.8 | Relationship between the depth of the Lakes Entrance Formation<br>and its MICP retention capacity     | 24 |
| 3.9 | Relationship between the depth of Latrobe Group seals and their MICP retention capacity               | 25 |
| 4.1 | An interpretation of top seal potential at a basin scale, Gippsland Basin                             | 27 |
| 4.2 | Composite well summary of the Kingfish Field                                                          | 28 |
| 4.3 | Petromod 10 output showing predicted present day accumulations at Top Latrobe horizon                 | 29 |
| 4.4 | Schematic cross-section showing evidence of hydrocarbon seepage<br>through the regional top seal      | 30 |
| 4.5 | Seismic data over the Golden Beach gas field revealing evidence<br>of possible hydrocarbon seepage    | 30 |
| 4.6 | ALF Survey on the Northern Terrace between the Sole gas field and Northright-1                        | 31 |
| 4.7 | Offshore gas chimney near Flathead-1 on the Northern Terrace                                          | 32 |
| 4.8 | Radiometrics data for the onshore Gippsland Basin                                                     | 36 |
| 4.9 | Seismic reflection line GCRP91a-09                                                                    | 37 |

### List of tables

| 3.1 | MICP supportable column heights for Gippsland Basin samples | 19 |
|-----|-------------------------------------------------------------|----|
|-----|-------------------------------------------------------------|----|



An interpretation of top seal potential at a basin scale, Gippsland Basin.

### **Executive Summary**

The Gippsland Basin is widely viewed as the prime site for the development of a large-scale geological CO<sub>2</sub> storage industry in Victoria. To facilitate this, GeoScience Victoria's Victorian Geological Carbon Storage project is providing a detailed geological assessment of the basin's suitability for geological carbon storage. In this study, the top seal potential of the Lakes Entrance Formation in the Gippsland Basin has been evaluated to provide a basin-scale understanding of the region's potential for CO<sub>2</sub> containment.

Thickness, distribution, facies and Mercury Injection Capillary Pressure data from the Lakes Entrance Formation suggest that the base of the unit within the Central Deep, western Northern Terrace and the onshore Lake Wellington Depression has excellent containment characteristics, with the capacity to withhold a vertical column of CO<sub>2</sub> hundreds of metres high. The sealing potential of the Lakes Entrance Formation on the Southern Terrace and Southern Platform is very good. The formation is thick and seal capacity results from Groper-1 (246 m of CO<sub>2</sub>) indicate that the seal has the potential to contain significant column heights of CO<sub>2</sub>. The Seaspray Depression and Northern Terrace have good to moderate sealing potential. In these locations, the seal thickness and the depth to the base of the formation is variable. Seal capacity results are also variable but generally much lower than those recorded in the Central Deep. The offshore Northern Platform and the onshore Lakes Entrance Platform, Baragwanath Anticline and Alberton Depression offer very little containment potential for injected CO<sub>2</sub>. 5

The results of the present study, when integrated with the results from other VicGCS investigations, will provide a basin-scale understanding of the Gippsland Basin's CO<sub>2</sub> geological storage potential.

### **1** Introduction

Victoria's brown coal resources in the Latrobe Valley are currently used principally for low-cost electricity generation, which is a key component for Victoria's manufacturing and industrial base. In addition, the potential exists to significantly expand the utilization of brown coal and to develop new value-added industries, such as coal-to-liquids. The pressing need to reduce carbon emissions means, however, that the usage of the coal resources in the future, will probably be contingent on reducing the coal industry's greenhouse footprint over the next 10 to 20 years.

Geological carbon storage (GCS) is a key enabling technology, which could allow the ongoing and potentially expanded exploitation of Victoria's massive brown coal resources. GCS involves the capture of CO<sub>2</sub> from sources such as power stations, coal-to-liquids plants and gas production from high-CO<sub>2</sub> gas fields, the transport of the captured CO<sub>2</sub> and finally, its injection in the sub-surface. Prior to transport and injection, the captured CO<sub>2</sub> is pressurised into a "super-critical" state (essentially a fluid somewhat less dense than water). Provided that the supercritical CO2 is injected into geological formations deeper than approximately 800 m, the CO2 will remain supercritical. Eventually, over thousands of years, the majority of the CO2 will dissolve into the formation waters or be trapped in crystallizing mineral phases. However, if the injected CO<sub>2</sub> should migrate to depths shallower than 800 m, the supercritical CO<sub>2</sub> phase transitions into a gas phase which has very different characteristics. This CO<sub>2</sub> gas phase can migrate much more quickly than supercritical CO<sub>2</sub> and it is also more difficult to contain under regional sealing units.

The most obvious site for the geological carbon storage of CO<sub>2</sub> generated in the Latrobe Valley is the Gippsland Basin. The Gippsland Basin has high quality Late Cretaceous and Cenozoic siliciclastic reservoirs, and has been the site of active petroleum exploration and production for over nearly forty years. Many of the oil fields within the basin are now near the end of their production lives, and hence the opportunity exists to develop areas previously used for petroleum production for GCS. However, such a process would effectively turn the basin's pore space into a multiple use zone, at least in the short to medium term. Management of potential conflicts between incumbent and future hydrocarbon producers and explorers within the basin and the needs of CO<sub>2</sub> emitters, and the wider society, to reduce emissions to meet mandated targets, will provide significant challenges into the future.

VicGCS (Victorian Geological Carbon Storage) is a four-year (2008-2013), \$5.2 million multi-disciplinary initiative that will characterise the geosequestration

potential of the offshore and onshore Gippsland Basin. The program will be delivered by GeoScience Victoria in partnership with key external organisations. A key goal of the VicGCS Project is to develop a sufficient geological knowledge of the onshore and offshore Gippsland Basin to allow the development and management of the region as a key GCS hub. Management of the region as a genuine multiple use zone will be an essential component – and challenge – of the project. The VicGCS project will assess the GCS potential of the Gippsland Basin under three technical themes, namely containment (sealing potential), injectivity-capacity (reservoir character and distribution) and impacts (migration characteristics).

This report specifically addresses the containment theme for the Gippsland Basin. The containment theme deals principally with key aspects of the integrity of the regional top-seal, the Lakes Entrance Formation, which spans the offshore and parts of the onshore basin. The key objective of this work is to determine where the Lakes Entrance Formation provides an effective top-seal for oil, gas and any injected CO<sub>2</sub> and where it does not. From a GCS viewpoint, the simple question is: 'If the CO<sub>2</sub> is put in, will it stay in?'

Investigations of the thickness, geometry and seal capacity of the Lakes Entrance Formation are presented, as is an interpretative sedimentary facies framework. Results include Mercury Injection Capillary Pressure (MICP) data from 37 wells in the Gippsland Basin, which have allowed a regional quantitative assessment of the sealing capacity of the Lakes Entrance Formation to be made. In addition, a secondary part of the containment theme is a brief consideration of the importance of intra-Latrobe sealing units within the basin, as well as subsidiary units which also act as top seals, such as the Gurnard Formation. Existing leakage and seepage data have been integrated with seal capacity results to produce a qualitative assessment of the seal potential of the Gippsland Basin.

This study focuses on the capillary properties of the seal. There is no evidence that, at a first-order, faulting or mechanical reactivation of the top sealing unit is an important control on seal potential in the Gippsland Basin. This aspect will, however, be further investigated in other VicGCS modules.

This report initially provides an overview of the regional geology of the Gippsland Basin. This is followed by a detailed evaluation of the sealing characteristics of the regional seal - the Lakes Entrance Formation, a subsidiary top seal - the Gurnard Formation and various intra-formational seals. These data are then combined into a new interpretative framework which presents a mapbased evaluation of the top seal potential at a basin-scale.

## 2 Regional Geology

The Gippsland Basin, one of Australia's most prolific hydrocarbon provinces, is situated in south-eastern Australia and is located about 200 km east of the city of Melbourne, Victoria.

The basin, which has both onshore and offshore elements, is a world-class hydrocarbon province and contains several giant oil and gas fields. The vast majority of the discoveries are reservoired within the siliciclastics of the Late Cretaceous to Paleogene Latrobe Group and almost all of the currently producing fields are located offshore in shallow water.

The details of the basin's tectonic evolution and its stratigraphic fill are provided in the following sections.

### 2.1 Tectonic Evolution of the Gippsland Basin

The east-west trending Gippsland Basin was formed during the break-up of Gondwana (Rahmanian et al., 1990; Willcox et al., 1992; Willcox et al., 2001; Norvick & Smith, 2001; Norvick et al., 2001) and the basin evolution is recorded by several depositional sequences that range from Early Cretaceous to Recent in age. The profound tectonic control on sedimentary systems in the basin is exemplified by several basin-wide angular unconformities that are easily recognised on seismic sections. Other timebreaks are only recognised using biostratigraphic age determinations delineating missing sections. This is of particular relevance in the context of the upper Latrobe Group, where extensive channel incision and subsequent infill processes resulted in complex sedimentary sequences that developed at slightly different time intervals, the extent of which cannot be resolved by seismic mapping alone.

As part of the Early Cretaceous rift system between Antarctica and Australia, the Gippsland Basin architecture initially featured a rift valley complex composed of multiple E-W trending half-grabens. Continued rifting into the Late Cretaceous generated a classic extensional geometry comprising a depocentre (the Central Deep) flanked by platforms and terraces. These are defined by the Rosedale and Lake Wellington Fault systems on the northern basin margin and by the Darriman and Foster Fault systems on the southern margin (Figure 2.1). The Central Deep is characterised by rapidly increasing water depths to the east that exceed 3,000 m in the Bass Canyon (Hill *et al.*, 1998). The Cape Everard Fault System, a prominent NNE-striking basement high evident on total magnetic intensity imagery (Moore & Wong, 2001), defines the eastern boundary of the basin. The western onshore extent of the basin is traditionally placed at the Mornington High, but for the units described in this report it is essentially represented by outcrops of Early Cretaceous Strzelecki Group sediments (Hocking, 1988). 7

Initial rifting in the Early Cretaceous resulted in 30% crustal extension (Power et al., 2001) and created a complex system of grabens and half-grabens. A compressional phase accompanied by uplift between 100 and 95 Ma, which has been linked to the separation of Australia from Antarctica (Duddy & Green, 1992), produced a new basin configuration and provided the accommodation space for large volumes of basement-derived sediments. Renewed extension during the Late Cretaceous, associated with the opening of the Tasman Sea, established the Central Deep as the main depocentre. Late Santonian sediments in the eastern part of the basin record the first marine incursion (Partridge, 1999). Many of the earlier generated faults were reactivated during this tectonic phase.

A margin-sag basin, characterised by rapid subsidence, followed the crustal rifting. Extensional tectonism prevailed until the early Eocene and produced pervasive NW-SE trending normal faults. By the middle Eocene, sea-floor spreading had ceased in the Tasman Sea and a compressional period began to affect the Gippsland Basin initiating a series of NE to ENE-trending anticlines (Smith, 1988). Compression and structural growth peaked in the middle Miocene and resulted in basin inversion. All the major fold structures at the top of the Latrobe Group which became the hosts for the large oil and gas accumulations, such as Barracouta, Tuna, Kingfish, Snapper and Halibut, are related to this tectonic episode.

Tectonism has continued to overprint the basin as documented by localised uplift during the late Pliocene to Pleistocene. This is also reflected in the uplift of Pliocene sediments on the Barracouta, Snapper and Marlin anticlines as well as around Lakes Entrance. Ongoing episodical tectonic activity is recorded by seismic events around the major basin bounding faults.



*Figure 2.1* Structural elements map of Gippsland Basin, showing distribution of oil and gas fields.



Figure 2.2 Stratigraphic column for the Gippsland Basin, showing petroleum system elements and tectonic evolution (after Bernecker & Partridge, 2001).

ശ

# 2.2 Stratigraphy and Depositional History

10

Based on lithological variations, three broad stratigraphic successions are recognised in the Gippsland Basin (Figure 2.2). These stratigraphic groups comprise a) the Strzelecki Group, a thick sequence of non-marine, volcanoclastic-rich sediments; b) the Latrobe Group, a sequence of marine and non-marine siliciclastics that host all the known hydrocarbon occurrences in the offshore; and c) the Seaspray Group, a carbonate-dominated sequence that is the regional seal to the top-Latrobe Group oil and gas accumulations.

#### Strzelecki Group

The Strzelecki Group represents syn-rift sedimentation and unconformably overlies Palaeozoic igneous and folded sedimentary rocks. The group consists dominantly of interbedded lithic, volcanoclastic sandstones and mudstones, including several coal-rich horizons. The sediments accumulated in a non-marine environment under a fluvial depositional regime. The Strzelecki Group has strong affinities with the Otway Group in the Otway Basin (Duddy & Green, 1992). The group is regarded by the industry as 'economic basement', although considered to have potential for hydrocarbon generation and accumulation, in particular in the western part of the basin (Mehin & Bock, 1998). In fact, onshore the gas accumulations of the North Seaspray and Gangell fields are reservoired in the Strzelecki Group. The total thickness of the Strzelecki Group is ill-defined, but is likely to exceed 1500 m (Gilbert & Hill, 1994).

#### Latrobe Group

The Latrobe Group hosts all currently known hydrocarbons in the offshore. Four subgroups are discriminated, each of which is bound by basin-wide unconformities and each consists of formations that are distinguished according to their main depositional facies assemblages.

#### **Emperor Subgroup**

The Emperor Subgroup (Bernecker & Partridge, 2001) has only been intersected around the basin margins in the vicinity of the bounding faults of the Northern and Southern terraces. Seismic data suggests that a thick section of the subgroup exists below depths of 4 to 6 km in the Central Deep (Bernecker & Partridge, 2001). The Otway Unconformity, separating the subgroup from the underlying Strzelecki Group, developed in response to uplift along the basin margins. Large amounts of erosional material were delivered to the evolving rift-valley in which one or several deep lakes emerged as the depocentre. The Emperor Subgroup comprises coarse-grained alluvial fan/plain as well as lacustrine facies associations that are characteristic of rift-valley deposition prior to continental break-up. The Kersop Arkose (Bernecker & Partridge, 2001), a coarsegrained to conglomeritic quartz and feldspathic sandstone, was derived from erosion of uplifted granites beyond the faults bounding the Central Deep. The Admiral Formation (Bernecker & Partridge, 2001) overlies but may also be laterally equivalent to the Kersop Arkose. It is characterised by quartz-dominated lithic arenites that were derived from Palaeozoic sedimentary and metamorphic terrains as well as from newly uplifted early Cretaceous sediments. The Kipper Shale (Lowry & Longley, 1991) represents lacustrine deposition and is dominated by mudstones with intercalated fine- to medium-grained sandstones (Marshall & Partridge, 1986; Marshall, 1989; Lowry & Longley, 1991). The palaeolake, or lakes, presumably occupied most of the Turonian riftvalley and received detrital sediments from the basin margins as distribution of the formation is widespread (Bernecker & Partridge, 2001). The Curlip Formation (Bernecker & Partridge, 2001) consists of sandstones and conglomerates that are interbedded with thin shales and minor coals. The formation overlies and interfingers with the Kipper Shale; the top marked by the basin-wide Longtom Unconformity that terminates Emperor Subgroup deposition. Prior to its recognition (Partridge, 1999), this unconformity was previously merged or confused with the Seahorse Unconformity at the top of the Golden Beach Subgroup. Accordingly, numerous well intervals were erroneously assigned to the former Golden Beach Group. The hiatus between the Emperor and Golden Beach subgroups separates non-marine freshwater lacustrine sediments from marine sediments and correlates with the opening of the adjacent Tasman Sea.

#### **Golden Beach Subgroup**

The Golden Beach Subgroup (formerly Golden Beach Group of Lowry & Longley, 1991) is essentially confined to the Central Deep, reflecting tectonic movement along the basin margins where conglomerates accumulated. Finer material was transported by fluvial systems that continued to migrate across a gradually widening lower coastal plain and terminated as deltaic bodies in a shallow sea. Alternation between marine and non-marine influence persisted throughout the remainder of deposition of the Latrobe Group and had great control on the distribution of petroleum system elements. Two formations are distinguished within the Golden Beach Subgroup: the marine Anemone Formation and the fluvial/paralic Chimaera Formation. The Anemone Formation consists predominantly of mudstones (shales) and finegrained siliciclastics representing shallow to open marine deposition that prevailed in the eastern part of the basin (Bernecker & Partridge, 2001). The Chimaera Formation (formerly the Chimaera Sandstone of Lowry & Longley, 1991) is a nonmarine succession that comprises coarse-grained alluvial/fluvial sediments as well as fine-grained floodplain deposits including some coals (Bernecker & Partridge, 2001). The formation has been intersected in wells near the Rosedale Fault System but is absent from the Northern Platform and Northern Terrace: the formation is found as far south as Omeo-1, -2A and Perch-1.

The Golden Beach Subgroup also contains several volcanic horizons that have been identified as Campanian. These volcanics, most prominently developed in the Kipper Field and in the Basker/Manta/Gummy area, terminate the Golden Beach Subgroup and signal another depositional hiatus represented by the Seahorse Unconformity. The time gap recorded by the Seahorse Unconformity is longest in Golden Beach West-1, where the Upper F. longus biozone directly overlies N. senectus sediments. Closer to the Rosedale Fault System, F. longus sediments overlie the Campanian volcanics (Bernecker & Partridge, 2001).

#### Halibut Subgroup

The Halibut Subgroup hosts the bulk of the hydrocarbons in the Gippsland Basin and comprises five formations that are distinguished according to their dominant depositional facies regimes. These formations document the changes from non-marine to marine environments in a west-east or onshoreoffshore direction. The Barracouta Formation (revised and formalised by Hocking, 1976a) is characterised by fluvial claystones, siltstones and sandstones and minor coals and was deposited on an upper coastal plain. The Volador and Kingfish formations comprise the typical lower coastal plain coal-rich sediments and are separated by the Kate Shale (Partridge, 1999). The Kate Shale is a marine interval recognised at the Cretaceous/Cenozoic boundary. It is intersected in wells in the eastern portion of the offshore basin and is regarded as a good sealing lithology. The Mackerel Formation consists of nearshore marine sandstones, commonly typified by excellent reservoir qualities, with intercalated marine shales.

Sea-level fall in the early Eocene, driven by basin inversion, initiated a period of major canyon cutting during which parts of the lower coastal plain and the shelf were eroded. The array of submarine channels that developed has added a considerable complexity to seismic mapping, given that the major channels cut down hundreds of metres into the underlying strata. During subsequent transgression, the channels were filled with marine sediments (e.g. Flounder Formation) leading to the generation of potential stratigraphic hydrocarbon traps (Johnstone *et al.*, 2001). The Marlin Unconformity highlights the major erosional event associated with channel incision, terminating deposition of the Halibut Subgroup. 11

#### Cobia Subgroup

The middle Eocene to early Oligocene Cobia Subgroup (formerly the Cobia Group of Thompson, 1986) comprises the coal-bearing lower coastal plain facies of the Burong Formation (Partridge, 1999) and the shallow to open marine Gurnard Formation (James & Evans, 1971). The Gurnard Formation is a condensed section composed of fine- to mediumgrained glauconitic siliciclastics. Also included in the subgroup is the Turrum Formation (James & Evans, 1971) that consists of mid-Eocene marine channel-fill sediments. Deposition of the Cobia Subgroup ceased during the early Oligocene, as a consequence of a marked decline in sediment supply. Large areas of the central basin were left with starved or condensed sections, which led to the development of what is traditionally known as the 'Latrobe Unconformity' (Partridge, 1999). On seismic sections, this surface is expressed by a prominent reflector marking the boundary between siliciclastic and calcareous rocks. This reflector is commonly interpreted as a time-line, however, biostratigraphic data clearly indicates that the Latrobe Unconformity should be considered a composite of several, separate erosional events (Partridge, 1999).

#### Seaspray Group

The Seaspray Group consists of calcareous sediments that unconformably overlie the siliciclastics of the Latrobe Group. Subsequent to a change in ocean circulation along the southern Australian margin, the accumulation of marls and limestones began in the middle Eocene in the Eucla Basin, extended to the Otway Basin during the late Eocene, reaching the Gippsland Basin during the early Oligocene (Holdgate & Gallagher, 1997). Since then, cool-water carbonate production resulted in progradation of the shelf edge. In petroleum geological terms, the Seaspray Group, in particular the Lakes Entrance Formation, is considered a basinwide, high quality regional top seal to the oil and gas accumulations at the top-Latrobe Group reservoirs.

#### **Lakes Entrance Formation**

The Lakes Entrance Formation is the lowermost unit of the Seaspray Group and is composed predominantly of calcareous mudstones, with some variation in composition across the basin. The recognition of major lateral facies changes has allowed the formation to be subdivided into separate onshore and offshore components.

Onshore, the Cunningham Greenstone Member, Giffard Sandstone Member, Colquhoun Sandstone Member, Seacombe Marl and the Metung Marl are identified as constituent units of the Lakes Entrance Formation (Hocking 1976a). The constituent

formations of the onshore Seaspray Group have been divided into nine sequence stratigraphic units based on microfossil evidence (Holdgate & Gallagher, 1997). Offshore, four distinct units within the Seaspray Group are identified (Bernecker et al., 1997) according to well-log character, lithological composition and depositional facies. 'Unit I', a hemipelagic fossiliferous mudstone, is equivalent to the onshore marly Lakes Entrance Formation (Bernecker et al., 1997) and part of the offshore Lakes Entrance Formation (T. Bernecker pers. comm. Geoscience Australia, 2007). 'Unit I' of the Seaspray Group was formalised by establishing a new formation name, the Swordfish Formation (Partridge, 1999). The Swordfish Formation was identified by Partridge (1999) in a small number of wells in the Central Deep. For the purpose of this containment study, no attempt has been made to differentiate between the Lakes Entrance Formation and the Swordfish Formation. Perhaps that differentiation might be required for more detailed studies in the future.

#### **Gippsland Limestone**

The Gippsland Limestone is a thick sequence of marine carbonates comprised of fossiliferous limestones, marly limestones and marls which overlie the Lakes Entrance Formation in the offshore and onshore Gippsland Basin (Gallagher & Holdgate, 1996). There is a major increase in carbonate content from the Lakes Entrance Formation to the Gippsland Limestone (Holdgate & Gallagher, 2003). Onshore, the Gippsland Limestone is divided into members (Hocking, 1976b) that outcrop locally around the Baragwanath Anticline. The formation thickness onshore exceeds 500m (Gallagher & Holdgate, 1996), whilst offshore, may attain a thickness of more than 1500m (James & Evans, 1971). The Gippsland Limestone is early to middle Miocene in age (e.g. Hocking, 1976a). Marine carbonate trangressive and highstand systems tracts have been identified in the onshore Lake Wellington Depression through the integration of seismic, wireline log and micropalaeontological data (Gallagher & Holdgate, 1996; Holdgate & Gallagher, 1997).

Onshore, in the Lake Wellington and Seaspray Depressions, a marine sequence of middle Miocene to Pliocene aged sediments rests unconformably on the Gippsland Limestone. This sequence is comprised of the Wuk Wuk Marl, Bairnsdale Limestone, Tambo River Formation and Jemmys Point Formation.

### **3 Seal Analysis**

The Lakes Entrance Formation provides the primary regional top seal for the majority of the hydrocarbon resources at the top of the Latrobe Group in the Gippsland Basin. The focus of this report study is on determining the Lakes Entrance Formation's seal potential at a basin scale; sealing potential is derived in part from an understanding of its characteristics (distribution, lithology, sedimentary facies, thickness, capillary properties) across the basin.

At the basin margins, particularly onshore where the Lakes Entrance Formation is absent, it is worthwhile investigating whether or not the overlying Gippsland Limestone may provide an adequate top seal. Although a complete analysis of the Gippsland Limestone is not yet completed, some initial results are presented in this report. As yet, there has been no attempt to map the distribution of the Gippsland Limestone, especially onshore, although the distribution of the Seaspray Group has been mapped previously (Gallagher & Holdgate, 1996).

A brief overview of Latrobe Group sealing units is included in this report as these units may contribute to the overall seal potential of the basin. Latrobe Group top seals: the Gurnard, Burong and Turum formations of the Cobia Subgroup and intraformational seals of the Halibut, Golden Beach and Emperor subgroups may act as important barriers or baffles to increase the length of the flowpath of injected supercritical CO<sub>2</sub>. The lateral extent of most Latrobe Group seals is likely to be restricted and their containment potential is therefore probably poor at a regional scale. However, more widespread marine units such as the Kate Shale (Halibut Subgroup) are more likely to contribute to the overall sealing potential of the offshore Gippsland Basin.

### 3.1 Previous Work

Data relevant to the assessment of sealing process in the Gippsland Basin have been collected over the last forty years as part of petroleum exploration activity. In recent years, these investigations have focussed on evaluating the Lakes Entrance Formation for top seal potential and local Latrobe Group intra-formational seals as possible barriers/baffles to the flow of injected supercritical CO<sub>2</sub> in the Gippsland Basin.

Daniel (2005) completed a seal capacity study of the Gippsland Basin as part of the CO2CRC Latrobe Valley CO<sub>2</sub> Storage Assessment Program. A seal capacity study was produced to complement reservoir and other technical evaluations of the Gippsland Basin for the purpose of geological CO<sub>2</sub>

storage (e.g. Root *et al.,* 2004; Gibson-Poole *et al.,* 2005; Gibson-Poole *et al.,* 2008).

Daniel (2005) determined column retention heights for CO<sub>2</sub> from Mercury Injection Capillary Pressure (MICP) analysis of 31 sealing lithology core samples from wells in the Central Deep of the Gippsland Basin. Top seal and intraformational sealing facies from the Latrobe Group were analysed. Core samples from the Lakes Entrance Formation regional top seal had CO<sub>2</sub> retention capacities ranging from 17 m for transgressive inner shelf facies to 1070 m for high-stand, outer shelf facies. Local top seals from the Cobia Subgroup had variable sealing capacities: the Gurnard Formation could retain only 0.2 m of CO2 in Bream-2 but up to 723 m in Kingfish-9; the Turrum Formation in Wrasse-1, could retain a 670 m column of CO<sub>2</sub>. Seal capacity values associated with the Latrobe Group intraformational seals of the Halibut Subgroup ranged from 52 m in the Kingfish Formation to 961 m in the Mackerel Formation. The areal extent of these seals is largely unknown, with the estimates based on the likely extent of the facies which the seals represented.

In 2008, GeoScience Victoria carried out an initial assessment of containment potential for the purpose of carbon capture and storage as part of a wider study of the petroleum systems in the Gippsland Basin (O'Brien *et al.*, 2008). Hydrocarbon and CO<sub>2</sub> column retention heights were determined for the Lakes Entrance Formation from 16 core samples taken from wells in both the onshore and offshore portions of the basin. The thickness, geometry and a simple facies map of the Lakes Entrance Formation regional top seal were used to infer seal capacity across the basin at, or as close as possible to, the base of the formation.

From thickness, distribution and MICP capacity data for the Lakes Entrance Formation O'Brien et al. (2008) determined the base top seal within the Central Deep to have excellent containment characteristics, with the capacity to withhold hundreds of metres of gas or CO<sub>2</sub>. The flanking Northern and Southern terraces were found to have lesser, but still adequate containment, with the potential to withhold 50-100 m gas being proven on parts of the Northern Terrace. In contrast, the Northern and Southern platforms were considered to have very poor sealing characteristics; with sealing capacity decreasing to only 5 m of gas and 13 m of CO<sub>2</sub> at Groper-2. Onshore, within the Lake Wellington and Seaspray depressions the relatively thick top seal was considered to offer good containment. However, outside these areas, the Lakes Entrance Formation onshore was found to have generally poor MICP characteristics and therefore, inadequate containment.

In the early 1990s, Petrofina conducted, as part of their petroleum exploration program in the eastern offshore Gippsland Basin, an evaluation of Latrobe Group intra-formational sealing lithologies. An assessment of the Late Cretaceous Golden Beach Subgroup and the Volador Formation of the Halibut Subgroup aimed to quantify seal capacity through MICP analysis of core and cuttings samples from six wells (Martin, 1992). In a separate report, the most effective sealing lithologies and facies were identified in an effort to better understand the occurrence of hydrocarbons in the eastern offshore Gippsland Basin (Jalfin, 1994). Offshore shale facies were found to have very high sealing capacities, with the ability to retain hydrocarbon columns of around 1300 m. Lower shoreface facies had lesser capacities of 110 m, perhaps due to associated textural variations (Jalfin, 1994). The offshore shale facies were found to be much thicker and widely distributed than paludal and floodplain facies. Ductility tests revealed that the interstratified brittle and ductile rocks of lagoon/paludal facies could prove to be a major risk to seal integrity (Jalfin, 1994).

Over the last three decades, numerous airborne and ground surveys were conducted to detect hydrocarbon leakage or seepage in the offshore and onshore Gippsland Basin. The results obtained from these surveys are relevant to the assessment of containment potential as hydrocarbon seeps are unequivocal indicators of a failing top seal.

### 3.2 Seal Thickness and Geometry

#### Lakes Entrance Formation

Initially, a review of Lakes Entrance Formation tops was completed in order to ascertain formation thicknesses (see Appendix 1). A previous GeoScience Victoria compilation of formation tops from 155 wells in the offshore Gippsland Basin provided the basis for this review. The top of the Lakes Entrance Formation was refined in 43 of these wells. Some were reviewed because well tops and formation thicknesses in adjacent wells where inconsistent although structural data and well completion report information suggested no reason for large differences. In other wells, channel bases were erroneously identified as the top of the Lakes Entrance Formation, and in some, formation thicknesses were unreasonable [i.e. too thick for average accumulation rates (see Bernecker et al, 1997)]. The top of the Lakes Entrance Formation was then identified or compiled for an additional 111 wells. Well completion report lithology descriptions and wireline logs were used to determine the presence/absence of the formation onshore. In some areas onshore, the base of the Lakes Entrance Formation is considered a reservoir rather than a

seal (e.g. the Lakes Entrance Platform). In this area, it is therefore likely that true seal thickness may be less than the formation thickness and that further review may be warranted.

In general, the thickness of the regional seal increases from the onshore to the offshore portion of the Gippsland Basin (Figure 3.1). Onshore, the thickness of the Lakes Entrance Formation ranges between 19 and 176 m; it is thickest in the Lake Wellington and Seaspray depressions. Relative to the onshore, the average thickness of the Lakes Entrance Formation is increased nearshore and on the southern and northern platforms offshore. The formation attains its greatest thickness in the offshore Central Deep, reaching a maximum of 430 m; it is thinner on the flanking Southern and Northern terraces. In general, the Lakes Entrance Formation is between 100 to 200 m thick over the north-western gas fields (i.e. Barracouta, Snapper and Turrum) and 200 to 300 m thick over the eastern fields (i.e. Tuna, East Pilchard, Basker and Gummy) and the south-eastern oil fields (i.e. Kingfish, Fortescue, Cobia, Halibut and Blackback).

The depth to the base of the Lakes Entrance Formation increases from the onshore to the offshore (see Figure 3.1 for top Latrobe Group structure map and Figure 3.2 for base Lakes Entrance Formation contours). In the Central Deep, the base of the Lakes Entrance Formation occurs at approximately 2,000 to 3,500 m sub-sea, whereas towards the margin of the Gippsland Basin, depths of 500-1,000 m are typical. Onshore, where the Lakes Entrance Formation is thinnest, the depths decrease to less than 400 m. The depth to the base of the regional top seal is considered significant as it is regarded that for CO2 to remain in supercritical phase, it is necessary to inject at depths greater than 800m (e.g. van der Meer, 1992; Holloway & Savage, 1993). However, Bachu (2003), for example, notes that the depth at which supercritical conditions are met may vary significantly depending on surface temperature and geothermal gradients.

In the current study, the marine facies present at the level of the basal Lakes Entrance Formation were identified from well completion reports. A simple representation of the basal Lakes Entrance Formation facies is presented in Figure 3.2. Overall, these facies are broadly similar to those proposed by Bernecker *et al.* (1997) and Gibson-Poole & Svendsen (2005).

#### Latrobe Group

#### **Gurnard Formation**

The Gurnard Formation underlies the Lakes Entrance Formation in some areas of the Gippsland Basin and acts as a top seal for several giant fields in the Central Deep. The thickness and distribution of the Gurnard Formation are highly variable. Partridge (1999) noted that 'The (Gurnard) Formation is generally not present or very thin over most of the eroded topographic highs of Blackback/Terakihi, Kingfish, Mackerel, Halibut/Cobia/Fortescue and Marlin'. The western limit of the Gurnard Formation is roughly aligned with the current day shoreline in an arc to the west of the Barracouta field. Partridge (1999) reported a minimum thickness of 7m in Moray-1 and a maximum of 78m in Bullseye-1.

#### Intra-formational seals

There are several intra-formational sealing units within the deeper Latrobe Group, which include floodplain sediments deposited in upper and lower coastal plain environments, as well as lagoonal to offshore marine shales. These local seals are commonly thin and mostly occur within stacked sandstone/mudstone successions. Other effective seals are formed by several distinct volcanic horizons of Campanian to Paleocene age; these are often less than 50 metres thick, although they are known to exceed 100 m at the Kipper field. Excellent Latrobe Group intra-formational seals include the Turonian Kipper Shale and the late Maastrichtian to early Paleocene Kate Shale (Bernecker & Partridge, 2001). The Kipper Shale accumulated in shallow to deep-water lacustrine environments and is widespread in its distribution. It covers the offshore portion of the basin between the basin-bounding faults and its thickness exceeds 500 m in Kipper-1 (Bernecker & Partridge, 2001). In contrast, the shelfal marine Kate Shale is limited in extent (Figure 3.3), with its principal depocentre located around the Halibut and Flounder fields (Bernecker & Partridge, 2005). The Kate Shale reaches its maximum thickness around and underneath the oil fields, which dominate the Central Deep. The thickest intersection of the sequence is 120 m at Trumpeter-1.



*Figure 3.1 Lakes Entrance Formation thickness and top of Latrobe Group depth structure map.* 



Figure 3.2 Sedimentary facies identified at the base of the marine Lakes Entrance Formation.

### 3.3 Mercury Injection Capillary Pressure (MICP) Analysis

Maximum column retention capacities for oil, gas and CO<sub>2</sub> are routinely derived from Mercury Injection Capillary Pressure (MICP) analysis of sealing lithologies. The maximum column height that can be contained by a seal is called the seal capacity and is an important factor in the evaluation of seal potential for the geosequestration of carbon dioxide (Kaldi & Atkinson, 1997). As part of the present study, 37 samples were submitted to ACS Laboratories in Perth for MICP analysis (see Appendix 2 for threshold pressure data tables and charts). Maximum column retention capacities for oil and gas were determined using standard ACS methodologies. CO<sub>2</sub> retention capacities were determined after the method outlined in Daniel (2005). See Appendix 3 for the table of values used for CO<sub>2</sub> column height calculation. As it is not routine for exploration companies to acquire conventional cores within sealing lithologies such as the Lakes Entrance Formation, the number of suitable core samples was limited. Samples were chosen close to the base of the formation; otherwise, samples were selected as near as possible to the base of the available cored interval. In onshore locations where suitable lithologies within the Lakes Entrance Formation were not available, samples from the Gippsland Limestone were chosen.

Early in 2008, MICP data from 16 core samples were analysed and interpreted (O'Brien *et al.*, 2008). An additional 21 samples were acquired subsequently, significantly increasing the database of MICP values available for the onshore and offshore Gippsland Basin. In Table 3.1, newly acquired results are highlighted. In total, 31 samples of the Lakes Entrance Formation were taken from 26 wells, 2 samples from the underlying Gurnard Formation, and 4 samples from the overlying Gippsland Limestone.

### **3.4 Seal Capacity Results**

The seal capacity results for the Lakes Entrance Formation, Gurnard Formation and Gippsland Limestone are best summarised in Figures 3.4, 3.5 and 3.6. The seal capacity in the offshore Central Deep is excellent. Column heights for gas in this area range from 185 m in Tuna-1 to 751 m in Wrasse-1. For CO<sub>2</sub>, column heights range from 250 m in Barracouta-1 to 947 m in Wrasse-1. Sealing capacity on the offshore Southern Platform was previously reported as poor, based on MICP results from the base of the Lakes Entrance Formation in Groper-1 and Groper-2 (O'Brien *et al.*, 2008). A new result from further up-section in Groper-1 (287 m of gas and 246 m of CO<sub>2</sub>) elevates the potential of the regional seal on the southern flank. In the onshore Lake Wellington Depression, the seal capacity varies from excellent (377 m of gas and 306 m of CO<sub>2</sub>) where the Lakes Entrance Formation is thickest in the central portion of the depression, to poor (5 m of gas and 4 m of CO<sub>2</sub>) at the margin near the terminal edge of the seal. Moderately effective seal capacity is characteristic of the onshore Seaspray Depression and the offshore Northern Terrace. The Alberton Depression appears to have poor sealing capacity (3 m of gas and 6 m of CO<sub>2</sub> in Woodside South-1). The Lakes Entrance Platform also has poor sealing capacity, although one result from Colquhoun East-6 of 123 m of gas and 164 m of CO<sub>2</sub> is an exception. Sealing capacity results are discussed in more detail in Section 4 of this report.

17

#### **Lakes Entrance Formation**

Seal capacity values for the Lakes Entrance Formation are greatest in the Central Deep, where the formation generally attains its maximum thickness and is at its greatest down-hole depths. The relationships between MICP capacity of the Lakes Entrance Formation and its thickness, and MICP capacity and the depth of the Lakes Entrance Formation are presented in Figures 3.7 and 3.8 respectively. There is a strong positive relationship between potential column height and the thickness of the regional seal. Offshore, where the seal is thicker, its retention capacity is high. In contrast, in marginal parts of the basin the thickness of the Lakes Entrance Formation decreases and retention capacity tends to decrease (Figure 3.7). The positive relationship between depth and retention capacity (Figure 3.8) is probably due to the fact that the Lakes Entrance Formation was deposited in an early postrift setting, where it progressively filled the palaeotopographic lows. The strong relationship between the thickness of the Lakes Entrance Formation and the depth of the top Latrobe Group surface is evident from Figure 3.1.

### **Gippsland Limestone**

Samples of the Gippsland Limestone were selected for MICP analysis where no suitable samples of the Lakes Entrance Formation were available or where the regional seal was absent. The four samples tested to date were all from wells in the western Lake Wellington Depression. Seal capacities for hydrocarbons and CO2 from Wooundellah-10 and Wooundellah-11 at a depth of 389 m are poor (see Table 1). Retention capacities of the Gippsland Limestone at greater depths, 599 m in Bundalaguah-10 and 628 m in Sale-15 are moderate, with respective column heights for CO2 of 41 m and 53 m. A more complete assessment of the sealing capacity of the Gippsland Limestone may be possible, as a limited selection of core samples from onshore and offshore wells remain available for analysis.



Figure 3.3 Thickness of the Kate Shale (as derived from well data).

|                         | SAMPLE       | AMPLE LEF        |                            |             |                                                                             |                                         | COLUMN HEIGHT (m) |     |                 |
|-------------------------|--------------|------------------|----------------------------|-------------|-----------------------------------------------------------------------------|-----------------------------------------|-------------------|-----|-----------------|
| WELL                    | DEPTH<br>(m) | THICKNESS<br>(m) | LOCATION                   | FACIES      | LITHOLOGY                                                                   | COMMENT                                 | GAS               | OIL | CO <sub>2</sub> |
| Barracouta-1            | 1021.95      | 114              | Central Deep               | Shelf       | Calcareous shale, fossiliferous, glauconitic, indurated                     | 33m above gas column                    | 207               | 334 | 250             |
| Bengworden South-6      | 914.9        | 157              | Lake Wellington Depression | Inner Shelf | Fossiliferous marl, silty, soft                                             | 52m above base of LEF                   | 302               | 486 | 282             |
| Bundalaguah-10**        | 599.8        | 134              | Lake Wellington Depression | -           | Fossiliferous marl, indurated                                               | Gippsland Limestone 40m above top LEF   | 10                | 16  | 41              |
| Cod-1                   | 1711.89      | 285              | Central Deep               | Basin       | Fossiliferous calcareous shale, fissile and brittle                         | 171m above base of LEF                  | 433               | 696 | 683             |
| Colquhoun East-6        | 180.7        | 35               | Lakes Entrance Platform    | Inner Shelf | Calcareous siltstone, glauconitic, well indurated                           | Base of the Metung Marl<br>Member       | 123               | 198 | 164             |
| Dulungalong-2           | 478.1        | 85               | Seaspray Depression        | Inner Shelf | Fossiliferous marl, friable to indurated                                    | 47m above base of LEF                   | 69                | 110 | 78              |
| Flounder-6              | 1929.38      | 394              | Central Deep               | Basin       | Calcareous mudstone, indurated                                              | 3m above gas                            | 207               | 334 | 460             |
| Fortescue-2             | 2420         | 252              | Central Deep               | Basin       | Calcareous mudstone, well indurated                                         | Base of LEF                             | 328               | 311 | 425             |
| Fortescue-2*            | 2430         | -                | Central Deep               | -           | Glauconitic calcareous mudstone, well indurated                             | Gurnard Formation 10m below base of LEF | 193               | 528 | 303             |
| Fortescue-3             | 2411.50      | 252              | Central Deep               | Basin       | Calcareous mudstone, well indurated                                         | 1m above base of LEF                    | 437               | 702 | 641             |
| Gippsland Frome Lakes-4 | 503.5        | 95               | Lake Wellington Depression | Inner Shelf | Marl, silty and glauconitic, friable                                        | 23m above base of LEF                   | 17                | 28  | 18              |
| Gippsland Frome Lakes-4 | 506.6        | 95               | Lake Wellington Depression | Inner Shelf | Marl, glauconitic, friable                                                  | 20m above base of LEF                   | 93                | 150 | 120             |
| Golden Beach West-1     | 667.68       | 119              | Seaspray Depression        | Inner Shelf | Fossiliferous silty marl, slightly glauconitic, friable to indurated        | 27m above base of LEF                   | 22                | 35  | 87              |
| Goon Nure-9             | 726.3        | 129              | Lake Wellington Depression | Inner Shelf | Marl, indurated                                                             | 21m above base of LEF                   | 251               | 404 | 213             |
| Groper-1                | 909.15       | 123              | Southern Platform          | Inner Shelf | Calcareous mudstone, indurated                                              | 22m above base of LEF                   | 287               | 461 | 246             |
| Groper-1                | 926.10       | 123              | Southern Platform          | Inner Shelf | Glauconitic mudstone,<br>calcareous, fossiliferous, friable                 | 5m above base LEF                       | 30                | 49  | 29              |
| Groper-1*               | 932.00       | -                | Southern Platform          | -           | Glauconitic sandstone, indurated                                            | Gurnard Formation 1m below base LEF     | 19                | 30  | 24              |
| Groper-2                | 747.86       | 73               | Southern Platform          | Inner Shelf | Glauconitic mudstone,<br>calcareous, fossiliferous, friable to<br>indurated | 13m above base of LEF                   | 5                 | 8   | 13              |
| Hunters Lane-1          | 377.00       | 76               | Lakes Entrance Platform    | Inner Shelf | Fossiliferous bioturbated<br>mudstone, glauconitic,<br>micaceous, friable   | 34m above granodiorite basement         | 6                 | 10  | 18              |

 Table 3.1
 Supportable column heights for Gippsland Basin samples, based upon MICP results. The majority of samples were taken from Lakes Entrance

 Formation intervals with the following exceptions: \*Gurnard Formation \*\*Gippsland Limestone. Shaded samples from O'Brien et al., 2008.

|                    | SAMPLE       | MPLE LEF<br>EPTH THICKNESS<br>) (m) | LOCATION                   | FACIES      | LITHOLOGY                                                            | COMMENT                                    | COLUMN HEIGHT (m) |      |                 |
|--------------------|--------------|-------------------------------------|----------------------------|-------------|----------------------------------------------------------------------|--------------------------------------------|-------------------|------|-----------------|
| WELL               | DEPTH<br>(m) |                                     |                            |             |                                                                      |                                            | GAS               | OIL  | CO <sub>2</sub> |
| Kingfish-3         | 2143.05      | 264                                 | Central Deep               | Basin       | Calcareous mudstone, indurated                                       | 101m above base of LEF                     | 207               | 334  | 463             |
| Meerlieu-4         | 722          | 141                                 | Lake Wellington Depression | Inner Shelf | Fossiliferous silty marl, slightly glauconitic, friable to indurated | 38m below top of LEF                       | 222               | 358  | 186             |
| Meerlieu-4         | 769          | 141                                 | Lake Wellington Depression | Inner Shelf | Marl, friable to indurated                                           | 56m above base of LEF                      | 331               | 532  | 301             |
| Meerlieu-15001     | 699.9        | 140                                 | Lake Wellington Depression | Inner Shelf | Fossiliferous silty marl, slightly glauconitic, friable to indurated | 20m above base of LEF                      | 74                | 119  | 95              |
| Mullungdung-7      | 363          | 17                                  | Seaspray Depression        | Inner Shelf | Marl, fossiliferous, glauconitic, silty, friable                     | 2m above base of LEF                       | 5                 | 9    | 12              |
| Sale-13            | 748.1        | 125                                 | Lake Wellington Depression | Inner Shelf | Marl, slightly fossiliferous and glauconitic, indurated              | 64m above base of LEF                      | 174               | 279  | 172             |
| Sale-13            | 795.6        | 125                                 | Lake Wellington Depression | Inner Shelf | Glauconitic marl, indurated                                          | 16m above base of LEF                      | 214               | 343  | 170             |
| Sale-15**          | 628.6        | 85                                  | Lake Wellington Depression | -           | Fossiliferous marl, friable                                          | Gippsland Limestone 31m above top of LEF   | 57                | 91   | 53              |
| Seacombe-7         | 947.6        | 176                                 | Lake Wellington Depression | Inner Shelf | Marl, friable to indurated                                           | 91m above base of LEF                      | 377               | 607  | 306             |
| Sole-1             | 805.9        | 170                                 | Northern Terrace           | Shelf       | Fossiliferous marl, glauconitic, sandy                               | 4m above gas column                        | 32                | 52   | 54              |
| Sperm Whale Head-1 | 653.8        | 127                                 | Lake Wellington Depression | Inner Shelf | Marl, friable to indurated                                           | 11m below top of LEF                       | 230               | 370  | 196             |
| Sperm Whale Head-1 | 718.1        | 127                                 | Lake Wellington Depression | Inner Shelf | Marl, friable to indurated                                           | 51m above base of LEF                      | 316               | 509  | 285             |
| Tuna-1             | 1160.00      | 259                                 | Central Deep               | Basin       | Calcareous mudstone, indurated                                       | 151m above gas column                      | 185               | 298  | 289             |
| Woodside South-1   | 522.12       | 80                                  | Alberton Depression        | Inner Shelf | Fossiliferous marl, soft and friable                                 | 70m above base of LEF; 10m from top of LEF | 3                 | 5    | 6               |
| Wooundellah-10**   | 389.3        | -                                   | Lake Wellington Depression | -           | Fossiliferous silty marl, soft and friable                           | Gippsland Limestone                        | 5                 | 8    | 4               |
| Wooundellah-11**   | 389          | -                                   | Lake Wellington Depression | -           | Marl, fossiliferous, glauconitic, silty, friable                     | Gippsland Limestone                        | 8                 | 12   | 11              |
| Wrasse-1           | 2589.89      | 249                                 | Central Deep               | Basin       | Calcareous mudstone, indurated                                       | 140m above base of LEF                     | 751               | 1207 | 947             |
| Wurruk Wurruk-13   | 584.9        | 137                                 | Lake Wellington Depression | Inner Shelf | Marl, fossiliferous, glauconitic, silty, friable                     | 40m below top of LEF                       | 19                | 30   | 21              |



Figure 3.4 Retention capacities for CO<sub>2</sub>: Combined results from the Gurnard Formation, Lakes Entrance Formation and Gippsland Limestone.



Figure 3.5 Retention capacities for gas: Combined results from the Gurnard Formation, Lakes Entrance Formation and Gippsland Limestone.



Figure 3.6 Retention capacities for oil: Combined results from the Gurnard Formation, Lakes Entrance Formation and Gippsland Limestone.



Figure 3.7 Relationship between the thickness of the Lakes Entrance Formation and its MICP retention capacity.



*Figure 3.8* Relationship between the depth of the Lakes Entrance Formation and its MICP retention capacity.

#### Latrobe Group Gurnard Formation

Previously, MICP results measured by Daniel (2005) illustrate the variability of the seal capacity of the Gurnard Formation (from a retention column height of 723 m CO<sub>2</sub> in Kingfish-9 to 0.19 m and 40 m respectively in Bream-2 and Fortescue-2). A result from further up-sequence in Fortescue-2 at 2430m (see Table 1) of a retention capacity of 193 m for gas and 303 m for CO<sub>2</sub> suggests that seal capacity increases up the vertical succession. However, a low CO<sub>2</sub> retention column height (24 m) is recorded at the top of the Gurnard Formation in Groper-1 (see Table 3.1), on the Southern Platform.

#### Intra-formational seals

Daniel (2005) and Gibson-Poole *et al.* (2008) have demonstrated that intra-formational seals can locally hold back hundreds of metres of CO<sub>2</sub> (see Figure 3.9). However, whilst their seal capacities can be high, the laterally discontinuous nature of these intra-Latrobe seals probably produces a substantial decrease in their seal potential at a regional scale. If MICP results below 100 m capacity are discounted in Figure 3.9, the overall trend is for the CO<sub>2</sub> column heights to increase as the depth decreases, (i.e. the capacities of the Latrobe Group seals are better at shallower depths); possible facies variations may control this trend.

25

The predominance of hydrocarbon discoveries at the base of the regional seal testifies to the overall ineffectiveness of the intra-Latrobe sealing system at a basin scale. Similarly, the combination of the variation in the seal capacity and the patchy geographic distribution of the Gurnard Formation suggest that the Lakes Entrance Formation will provide the ultimate regional barrier to the migration of hydrocarbons or injected fluids such as CO<sub>2</sub>.



Figure 3.9 Relationship between the depth of Latrobe Group seals and their MICP retention capacity.

### 4 Containment Evaluation

26

The interpreted effective seal potential of the regional top seal in the Gippsland Basin is summarised in Figure 4.1.

The seal potential appears to be excellent over the offshore Central Deep, the western Northern Terrace and the onshore Lake Wellington Depression. The sealing capacities for CO2 and gas recorded from 22 wells in these areas is high (i.e. column heights of greater than 150 m) and the depth to the top seal is 800 m or greater. The number of samples available for analysis is greatest in these two areas of the basin. Sealing potential on the Southern Terrace and most of the Southern Platform appears to be very good. Although few seal capacity results are available, values from Groper-1 indicate excellent capacity. The depth to the top seal is again greater than 800 m. The evaluation of this area cannot however be regarded as excellent because the spread of available data is insufficient to make such an assessment. Seal potential is regarded as good where the capacity of the Lakes Entrance Formation is likely to be effective yet is variable (i.e. 50-200 m column heights), and the base of the seal is intersected around 800 m. The seal is considered moderately effective in the Seaspray Depression and a small portion of the offshore Central Deep over the Golden Beach field and surrounds. In this area the base of the seal is intersected above 800 m and the sealing capacity column heights are less than 100 m. The seal is either absent or has poor sealing potential on the offshore Northern Platform and the onshore Lakes Entrance Platform; and the Baragwanath Anticline onshore between the Lake Wellington and Seaspray depressions. The westernmost Seaspray Depression, Alberton Depression and the southern margin of the offshore Southern Platform are also considered to have poor sealing potential due to low capacities and shallow top seal depths. In general, seal capacity decreases towards the basin margin and the limit that is currently the best estimate of the terminal edge of effective top seal.

### 4.1 Offshore Gippsland Basin

#### **Central Deep**

In terms of both the thickness and capacity of the regional top seal, containment characteristics for both hydrocarbons and CO<sub>2</sub> within the Central Deep appear to be excellent. However, the formation thins towards the onshore so that at Golden Beach-1 the thickness of the regional seal is reduced to less than 100 m thick. Between the Barracouta and Golden Beach fields, the depth at the base of the Lakes Entrance Formation shallows to less than 800 m. A possible explanation for the reduction in seal potential at the western extremity of the offshore Central Deep is discussed here with reference to palaeocharge histories, a migration model, seismic imagery and trap closure/hydrocarbon column heights.

The Lakes Entrance Formation within the Central Deep has a retention capacity of several hundred metres of oil and CO2 and approximately 200 - 750 m of gas (see Figures 3.4, 3.5 and 3.6). Samples taken from near the base of the Lakes Entrance Formation in Wrasse-1, Flounder-6 and Fortescue-3 have large hydrocarbon and CO2 column retention heights, as do samples analysed from slightly shallower depths within the Lakes Entrance Formation in Barracouta-1, Cod-1, Kingfish-3 and Tuna-1. These results are consistent with those of Daniel (2005). There are, however, variations in the retention capacities within the Central Deep that could be due to subtle variations in facies and lithologies. In addition, at a greater depth the Lakes Entrance Formation can withhold greater column heights. For example, the deepest sample from 2,589 m in Wrasse-1 in the Central Deep can contain 947 m of CO<sub>2</sub> and 751 m of gas, whereas 250 m of CO $_{\!\!2}$  and 204 m of gas can be contained at a depth of 1021 m in Barracouta-1. The MICP results indicate that the top seal capacity of the Lakes Entrance formation is excellent in the Central Deep. Moreover, the fact that numerous large gas and oil accumulations occur at top-Latrobe Group level, immediately beneath the regional top seal, also suggests that the Lakes Entrance Formation is an effective top seal, as confirmed by the MICP data.

This interpretation is supported by a general lack of leakage and seepage indicators in the region and by recent charge history work. Two AGSO (Geoscience Australia) water column geochemical sniffer surveys that traversed the Kingfish field failed to detect any anomalous zones. Furthermore, QGF and QGF-E analysis of the Kingfish oilfield has revealed that the charge history of this trap is relatively simple and that there is no evidence that Kingfish wells have ever had a palaeo-gas cap (Figure 4.2). It appears, therefore, that the Kingfish field was filled with an oil charge that has remained in place until the present day. The combination of the oil-prone charge history for Kingfish and the very high top seal capacities described here suggest that the reason that the central oil fields are in fact oil-filled and not gas-charged is simply due to the inherent nature of the charge into the traps. This rules-out the active seepage of gas from Kingfish through the regional seal, unless this occurred when the Lakes Entrance Formation was still unconsolidated (and there is no evidence to support this). A single gas chimney has been reported on seismic data near the Kingfish field by Cowley & O'Brien (2000), although it appears that the hydrocarbons associated with this leakage are not from the field itself.

The results of other palaeocharge history analysis (O'Brien *et al*, 2008) also confirm that all the large oil fields within the Central Deep have never had a gas cap, an observation entirely consistent with the large retention capacities obtained from the Lakes Entrance Formation over these traps.



*Figure 4.1* An interpretation of top seal potential at a basin scale, Gippsland Basin.



**Figure 4.2** Composite well summary of the Kingfish Field. The Gamma Ray (GR) Log shown here is from the Kingfish-2 well. MICP Analysis was conducted on core from the Lakes Entrance Formation in the Kingfish-3 well at a depth of 2143.05 m, which correlates with a depth of approximately 2135 m at Kingfish-2. Nine reservoir samples were collected from within the Kingfish Formation over a depth range 2252.47 m - 2319.22 m in the Kingfish-2 well.



**Figure 4.3** Petromod 10 output showing predicted present day accumulations at Top Latrobe horizon, Gippsland Basin. Note the potential for fill-spill between Halibut/Fortescue/Cobia, Kingfish, Bream and Barracouta fields and Marlin, Snapper and Barracouta fields. It is emphasised that large volumes of hydrocarbons generated over millions of years cannot be compared directly with limited volumes of  $CO_2$ .

Palaeocharge histories from oil and gas fields in the Gippsland Basin (O'Brien *et al.*, 2008) provide information on the type of hydrocarbons produced by the kitchens, as well as trap integrity through time. By constraining hydrocarbon kitchens, the data can be used to infer migration pathways through the basin. A very simple migration model of the petroleum systems in the Gippsland basin, produced in Petromod 10 (Figure 4.3) shows the linked nature of the traps along southern and northern spill-fill chains (consistent with Gibson-Poole *et al.*, 2008).

The modelled fill-spill chain at top Latrobe Group level, extending from the offshore Barracouta gas field, continues through the Golden Beach gas field and onshore to the Seaspray Depression (Figure 4.3). With the Golden Beach field on the main fill-spill pathway from the offshore, it is highly likely the structure would be filled-to-spill. However, only a 19 m live gas column is present in a total mapped closure of 40 m, suggesting that there is a very good chance that the structure is not filled-to-spill because of leakage by means of capillary failure of the seal (Figure 4.4)

Seismic reflection data over the Golden Beach gas field indicates the presence of a small fault cutting the top Latrobe Group horizon (Figure 4.5). Although there is no apparent gas chimney associated with this fault, there are various anomalous amplitudes close-by at shallow depth, which may indicate the presence of shallow hydrocarbons. Seal capacity and leakage and seepage data from the onshore Seaspray Depression and Baragwanath Anticline further support the trend of reduction of containment further onshore. It is therefore likely that fluids migrating through this point in the fill-spill chain towards the onshore Seaspray Depression and Baragwanath Anticline will not be contained as depicted in Figure 4.4.



**Figure 4.4** Schematic cross-section extending from the Barracouta gas field to the onshore showing evidence of hydrocarbon seepage through the regional top seal.



Figure 4.5 Seismic data over the Golden Beach gas field revealing evidence of possible hydrocarbon seepage.



*Figure 4.6* ALF Survey on the Northern Terrace between the Sole gas field and Northright-1, including visible oil slicks, anomalies, fluors and gas chimneys.

#### Northern Terrace

The containment potential of the Northern Terrace is best described as variable (see Figure 4.1). At the eastern extremity of the Northern Terrace, containment is lost somewhere between the Sole gas field and Northright-1 on the Northern Platform where the regional seal is absent. This is supported by remote and direct sensing survey leakage and seepage data that indicates the presence of active seepage in this area (i.e. the seal is failing). Further to the west, hydrocarbons reservoired at the top of the Latrobe Group, under the regional seal indicate that the seal is effective. Even further westward, near shore, few wells have been drilled on the Northern Terrace; it is therefore only possible to speculate on the effectiveness of the seal in this location. However, the sealing ability of the Lakes Entrance Formation in Cuttlefish-1 was noted to be very good (Irwin, 1999). In addition, there is no evidence of gas chimneys or anomalous amplitudes in the 2-D seismic images from this area.

Hydrocarbons are reservoired at the top of the Latrobe Group under the regional seal in several oil and gas fields in the 'central to eastern' Northern Terrace: Sole, Leatherjacket, Patricia-Baleen and Sperm Whale. Gas columns contained in the Patricia-Baleen Field and Sole-2 reach heights of 50 m and 75 m respectively, apparently without attendant top seal failure. Both the Patricia-Baleen and Sole fields are filled-to-spill suggesting that the regional seal across this part of the Northern Terrace can withhold gas columns with heights over 50 m. An MICP analysis of a sidewall core sample from the Lakes Entrance Formation in Sole-1 shows that the seal here can contain 32 m of gas and 54 m of CO<sub>2</sub>, suggesting that the seal is effective across this area. Therefore, the seal potential across the Northern Terrace appears to be adequate for the retention of modest gas columns.

Numerous remote and direct sensing surveys conducted in the north of the basin have detected apparent leak points in discrete locations on the Northern Terrace. For instance, between the Sole gas field and Northright-1, anomalies detected during an Airbourne Laser Fluorescence (ALF) Survey (Figure 4.6) provide some evidence for seal failure in this area. The fluor pattern and presence of slicks from the survey were interpreted as oil migrating dominantly to the northeast, towards the vicinity of Northright (Messent, 2000). Also, several apparent gas chimneys (Figure 4.6) near Flathead-1 (Figure 4.7), Moby-1 and Wahoo-1 may relate to migration of hydrocarbons from filledto-spill structures, potentially defining the effective edge of the seal for gas in this part of the basin. Indeed, the chimney near Flathead-1 is currently active and hydrocarbon anomalies detected during AGSO 1989 and 1991 "sniffer" surveys are present in the water column directly above the chimney (see O'Brien et al, 2008). A seafloor sampling survey conducted by AGSO in 1988 also indicated the presence of possible hydrocarbons in seafloor sediments near Wahoo-1, perhaps strengthening the notion of active hydrocarbon seepage in this area. This is consistent with the review of the seal geometry, that the Lakes Entrance Formation is absent from the margin of the Northern Terrace around Northright-1.

AGSO sniffer surveys also traversed part of the Rosedale Fault System and detected anomalies between the Sunfish and Tuna fields, perhaps indicating seepage along parts the fault system due to top seal failure. However, if the source of hydrocarbons on the Northern Terrace is from the Central Deep, with migration occurring at the top of the Latrobe Group then the presence of gas and oil fields north of the Rosedale Fault System indicates that the top seal is, at least partly effective along portions of the fault system.



Figure 4.7 Offshore gas chimney near Flathead-1 on the Northern Terrace.
### Southern Terrace

On the Southern Terrace, seal potential is interpreted to be very good. However, only a qualitative estimate is possible as there are no Lakes Entrance Formation core samples available for MICP analysis and there is currently no remote sensing evidence to identify points of seal failure. However, the thickness and depth of the base of the formation in this location (e.g. 388 m at 2140 m in Tarra-1) are similar to those of the Central Deep, suggesting that excellent seal capacity could be expected across the Southern Terrace. The trend for seal capacity to reduce with decreased formation thicknesses and depth near-shore in the Central Deep may also apply to the Southern Terrace. Given that the seal capacity further to the south on the Southern Platform in Groper-1 at 909 m is 246 m for CO<sub>2</sub>, it is likely that an estimate of very good potential is a conservative one.

### Northern Platform

The Northern Platform has poor sealing characteristics. The seal is present but not necessarily effective on the western Northern Platform, offshore from the Lakes Entrance Township (see Figure 4.1 for top seal limits). In the nearshore area close to Lakes Entrance, it is likely that seal capacity is further reduced. The regional seal is lost over the eastern Northern Platform, to the south of the Lakes Entrance and Marlo Townships (i.e. there is no seal present to the east of Marlo on the offshore Northern Platform). Only one well, Northright-1, has been drilled on the Northern Platform (where there is no seal present). Therefore, no core was available for MICP analysis of the Lakes Entrance Formation from the Northern Platform, and so seal potential can only be estimated, where it is present. Anomalies, flours and slicks from likely oil seepage to the northeast, towards Northright-1 were detected during an ALF survey on the eastern extremity of the Northern Platform (Messent, 2000). These observations are consistent with the likely absence of top seal across the eastern part of the Northern Platform.

### Southern Platform

There are few wells drilled on the Southern Platform. However, from seal capacity data gained from MICP analysis of core samples from Groper-1 and Groper-2, some evaluation of the seal potential of the Southern Platform is possible. The thickness of the regional seal decreases both towards the shore and towards the margin of the basin on the Southern Platform. The Lakes Entrance Formation is relatively thin at Groper-1 and Groper-2 with thicknesses of 123 m and 73 m respectively. However, MICP analysis of a core sample from 909 m in Groper-1 has demonstrated that the seal is capable of holding 287 m of gas or 246 m of CO<sub>2</sub>. This additional Lakes Entrance Formation core was sampled further uphole than those previously analysed. This data implies that the seal in this location is just as effective as it is in parts of the Central Deep, the potential of which is considered excellent. This assessment differs from a previous evaluation of the Southern Platform (i.e. O'Brien *et al.*, 2008) where the sealing capacity of the Lakes Entrance Formation on the Southern Platform was considered poor to moderate, based on initial MICP results from Groper-1 (30 m of gas) and Groper-2 (5 m of gas).

33

## 4.2 Onshore Gippsland Basin

### Lake Wellington Depression

Onshore, in the Lake Wellington Depression, the Lakes Entrance Formation is relatively thick (greater than 100 m) and the sealing capacity appears to be effective. In the nearshore area of the Lake Wellington Depression, the seal capacity is excellent but is reduced further to the west where the Lakes Entrance Formation thins significantly. Seventeen core samples from the Lake Wellington Depression yielded significantly greater retention heights than for any other onshore area. MICP data from friable to indurated marls indicates that the seal through this area can retain a maximum gas column height of 377 m and a CO<sub>2</sub> column of 306 m in Seacombe-7. These seal capacity results are as good as or better than some MICP values obtained across the Central Deep. Moving from east to west, further onshore, and north and south towards the bounding faults of the Lake Wellington Depression, retention capacities decrease to values of less than 20-metre column heights.

Murray (1997) and Summons *et al.* (1998) detected possible thermogenically-derived petroleum in sediments from the floor of Lake Wellington. This oil was interpreted to be geochemically similar to that in the offshore Turrum Field (Murray, 1997). However, Summons *et al.* (1998) suggested that the results did not constitute absolute proof of natural petroleum seepage into the Gippsland Lakes from the offshore basin. If this seepage were to be confirmed, migration from the northern spill-fillchain across the Rosedale Fault and into the Lake Wellington Depression could have significant implications for assessing the seal potential at the southern margin of the depression.

Based on sealing capacities alone, in the onshore Gippsland Basin, the regional seal in the Lake Wellington Depression has the greatest potential to retain hydrocarbons and CO<sub>2</sub>.

### **Seaspray Depression**

The sealing capacity in the Seaspray Depression appears to be adequate but decreases towards the margins. In the Seaspray Depression, adjacent to the current day coastline, the Lakes Entrance Formation is generally around 100 m thick. The regional top seal attains a maximum thickness of 159 m in Lake Reeve-1 on the coast about 16 km to the northwest of the Golden Beach gas field. The depth to the base of the regional seal is greater than 800 m at Lake Reeve-1 but reduces to less than 800 m further onshore to the west and towards both the Baragwanath Anticline to the north and the Alberton Depression to the southwest.

The regional top seal at Golden Beach West-1 can potentially contain 87 m of CO<sub>2</sub>, 35 m of oil and 22 m of gas. Dulungalong-2, located 2 km from Golden Beach West-1, can potentially contain 78 m of CO<sub>2</sub>, similar to that seen at Golden Beach West-1. Close to the terminal edge of the seal in Mullungdung-7, only 5 m of gas or a 12 m column of CO<sub>2</sub> could be contained. Whilst still representing an effective seal, at least for CO<sub>2</sub>, the retention capacities in the Seaspray Depression appear to be significantly less than those present in the Central Deep and the adjacent Lake Wellington Depression.

There are no known hydrocarbon accumulations under the base of the regional seal in the Seaspray Depression. The gas accumulations in fields such as North Seaspray and Gangell are found within Strzelecki Group sands rather than at the top of the Latrobe Group. Whether the lack of accumulations is due to an absence of effective seal over the Latrobe Group in the Seaspray Depression or inadequate migration pathways into the top Latrobe Group structures is unknown. Although not proven, a lack of effective seal, especially toward the depression margins, is most likely and would be consistent with the sealing capacity results.

Numerous gas chimneys, shallow anomalous amplitudes and possible Hydrocarbon-Related Diagenetic Zones (HRDZs) are present on seismic reflection data in the nearshore and within the Seaspray Depression, implying active hydrocarbon migration, leakage and seepage. Most of the mapped onshore gas chimneys also correlate strongly with mapped soil geochemistry anomalies.

### **Alberton Depression**

Onshore to the south of the Darriman Fault, in the Alberton Depression, the regional seal is very thin (less than 20 m) where it is present, close to the present day coast. The top seal capacity is poor: for example, at Woodside South-1 retention capacities of 3 m for gas and 6 m for CO<sub>2</sub> suggest that the friable fossiliferous marl at this location is more characteristic of a reservoir than a seal. The Alberton Depression therefore has very little, if any, potential for sealing hydrocarbons or CO<sub>2</sub>.

### Lakes Entrance Platform

The seal potential of the Lakes Entrance Platform is poor. There is no effective seal in this part of the onshore Gippsland Basin as that limit is found further to the south offshore (see Figure 4.1). Numerous wells have been drilled onshore on the Lakes Entrance Platform, with the only discovery being the Lakes Entrance Oil field. The oil rests stratigraphically in the basal greensand of the Lakes Entrance Formation. No other discoveries or shows have been made onshore to indicate the presence of hydrocarbons.

Of the wells located on the Lakes Entrance Platform only two samples were available for MICP analysis (Hunters Lane-1 and Colquhoun East-6). The Lakes Entrance Formation sample from Hunters Lane-1 yielded very low column retention heights (gas column height of only 6 m and a CO2 column height of 18 m). The sample was a friable fossiliferous glauconitic marl. In Colquhoun East-6, a stratigraphically higher sample at the shallow depth of 180 metres down-hole, yielded column heights of 123 m of gas and 164 m of CO<sub>2</sub>. This sample was an indurated calcareous and glauconitic siltstone. It is unknown whether the cementation displayed in this sample is widespread in lateral and vertical extent or whether it is a local diagenetic feature. In any case, the shallow depth of the formation at this location suggests that containment of supercritical CO2 would not be possible.

### **Baragwanath Anticline**

The Lakes Entrance Formation top seal is absent over the Baragwanath Anticline (between the Lake Wellington and Seaspray depressions) and top seal containment has been lost east of the anticline. Cover across the top of the Latrobe horizon on the anticline is thin (see Thomas & Baragwanath, 1949 and Hocking, 1988). For example, in Deadman Hill-1 the top of the Latrobe Group is intersected at around 100 m down-hole with only a 19 m cover of Lakes Entrance Formation with overlying Gippsland Limestone and Haunted Hill Formation.

34

Lakes Oil N.L. tested for oil shows in the vicinity of a seep approximately 10 km southeast of Sale (Mulready, 2002). The location of this seep is consistent with an anomaly present on the radiometrics data from Geoscience Australia's 1999 airborne survey and possible gas chimneys in this area (Figure 4.8). All data suggests that an active hydrocarbon seep occurs along the fill-spill chain at top-Latrobe Group level, up-dip from the Golden Beach and Barracouta gas fields, through the Seaspray Depression and on to the Baragwanath Anticline. From the radiometrics image (Figure 4.8), the uranium counts peak in and around the seep, which is located 1-2.5 km north or northeast of the mapped fill-spill chain. Whether this seep, or seepage chain, is principally the result of seepage up

the Rosedale Fault or seepage along the fill-spill chain, is currently uncertain. Nearby, seal capacity results from Dulungalong-2 in the Seaspray Depression, do indicate a reduction in the effective containment relative to the nearshore Central Deep and the Wellington Depression to the north. 35

Seismic reflection data located over the interpreted seepage chain reveal two possible gas chimneys above two separate faults (Figure 4.9), part of the Rosedale Fault System and have a strong association with high uranium concentrations (Figure 4.8), providing further evidence for poor sealing potential both on the anticline and on immediately adjacent areas.



**Figure 4.8** Radiometrics data for the onshore Gippsland Basin, along with modelled fill-spill chain from the Barracouta gas field. Known and interpreted hydrocarbon seeps correspond to a broadly east-southeast trending zone exhibiting strongly anomalous radiometrics response.

36



Figure 4.9 Seismic reflection line GCRP91a-09 showing possible gas chimneys above high-angle reverse faults of the Rosedale Fault System (RFS).

## 5 Conclusions and Future Directions

The conclusions drawn from this study are as follows.

The Lakes Entrance Formation currently acts as the primary top seal for hydrocarbons in the Gippsland Basin and will act as an effective regional barrier for the containment of CO<sub>2</sub> over large parts of the basin.

- The Lakes Entrance Formation consists of thick calcareous mudstones and shales in the Central Deep and where the formation thins toward the basin margin, fossiliferous and glauconitic marls. The Lakes Entrance Formation is thickest in the Central Deep, where the base is also deepest (2,000 to 3,500 m sub-sea). At the basin margins, the regional seal thins and the formation base occurs at depths of around 500 to 1,000 m sub-sea.
- The seal capacity of the Lakes Entrance Formation is greatest in the offshore Central Deep, the western Northern Terrace and the onshore Lake Wellington Depression (250 m to 947 m for CO<sub>2</sub>). These areas therefore have the best potential to contain injected CO<sub>2</sub> in the Gippsland Basin.
- On the Southern Terrace and Southern Platform, the sealing potential of the Lakes Entrance Formation is very good. The formation is thick and seal capacity results (246 m of CO<sub>2</sub>) from Groper-1 indicate that the seal has the potential to contain significant column heights of CO<sub>2</sub>.
- The Seaspray Depression and Northern Terrace have good to moderate sealing potential. In these locations, the seal thickness and depths are variable. Seal capacity results are also variable but generally much lower than those recorded in the Central Deep, Lake Wellington Depression and Southern Platform.

- The offshore Northern Platform and the onshore Lakes Entrance Platform, Baragwanath Anticline and Alberton Depression, offer very little containment potential for injected CO<sub>2</sub>.
- Locally, Latrobe Group intraformational seals have high seal capacities but values are variable. The generally thin nature and limited lateral extent of these seal leads to regionally low seal potential, as evidenced by the hydrocarbon accumulation patterns in the basin.

As part of the VICGCS program, further studies to investigate and understand the containment potential in the Gippsland Basin are underway.

- A QEMSCAN analysis of samples from the Lakes Entrance Formation and Gippsland Limestone used in this study is in progress. The QEMSCAN analysis will allow investigation of mineralogical controls on seal integrity and correlation with wireline log signatures.
- Further MICP analysis of the Seaspray Group (Lakes Entrance Formation and Gippsland Limestone) and intraformational Latrobe Group seals will be undertaken and the geometry of a major intraformational Latrobe Group seal, the Kate Shale, will be investigated. The seal potential of the onshore Lake Wellington Depression will be examined further by identifying and assessing Latrobe Group intraformational seals.
- Further work is planned on the mechanical properties of the regional seal and assessing the geomechanical stability of faults within the seal.
- The work in this report has concentrated on issues concerning top-seal. Further work is planned on issues relating to fault-seal within the Lakes Entrance Formation.

## References

BACHU, S., 2003. Screening and ranking sedimentary basins for sequestration of CO2 in geological media in response to climate change. *Environmental Geology* **44**, pp. 277-289.

BERNECKER, T. & PARTRIDGE, A.D., 2001. Emperor and Golden Beach Subgroups: The onset of Late Cretaceous sedimentation in the Gippsland Basin, SE Australia. *In* K.C. Hill & T. Bernecker (eds) *Eastern Australasian Basins Symposium: a refocused energy perspective for the future.* Petroleum Exploration Society of Australia Special Publication, pp. 391-402.

BERNECKER, T. & PARTRIDGE, A.D., 2005. Approaches to palaegeographic reconstructions of the Latrobe Group, Gippsland Basin, southeast Australia. *The APPEA Journal* **45**, pp. 581–599.

BERNECKER, T., PARTRIDGE, A.D. & WEBB, J.A., 1997. Mid-Late Tertiary deep water temperate carbonate deposition, offshore Gippsland Basin, southeastern Australia. *In* N.P. James & J.D.A. Clarke (eds) Cool Water Carbonates, *Society of Economic Palaeontologists and Mineralogists Special Publication* **56**, pp. 221-236.

COWLEY, R., & O'BRIEN, G.W., 2000. Identification and interpretation of leaking hydrocarbons using seismic data: a comparative montage of examples from the major fields of Australia's North West Shelf and Gippsland Basin: *The APPEA Journal* **40(1)**, pp. 121-150.

DANIEL, R. F., 2005. Carbon Dioxide Seal Capacity Study, Gippsland Basin, Victoria. *CO2CRC Publication No.* **RPT05-0035**. 85 p.

DUDDY, I.R. & GREEN, P.F., 1992. Tectonic development of Gippsland Basin and environs: identification of key episodes using Apatite Fission Track Analysis (AFTA). *In* C.M. Barton, K. Hill, C. Abele, J. Foster & N. Kempton (eds) *Energy, Economics and Environment – Gippsland Basin Symposium,* Australasian Institute of Mining and Metallurgy, pp. 111-120.

GALLAGHER, S. & HOLDGATE, G.R., 1996. Sequence Stratigraphy and Biostratigraphy of the Onshore Gippsland Basin, S.E. Australia. *Geological Society of Australia, Australian Sedimentologists Group Field Guide Series No.* **11**, 70. p. GIBSON-POOLE C.M. & SVENDSEN L. 2005. Reservoir characterisation and geological model, Kingfish Field/southern oil fields area, Gippsland Basin, SE Australia: implications for CO2 storage. *CO2CRC Publication No.* **RPT05-0041**, 57 p. 39

GIBSON-POOLE, C.M., CINAR, Y., DANIEL, R.F., ENNIS-KING, J., NELSON, E.J., SVENDSEN L., UNDERSCHULTZ, J., VAN RUTH, P.J. & WATSON, M.N., 2005. Latrobe Valley CO<sub>2</sub> Storage Assessment: Overview of Geological Characterisation and Numerical Flow Simulation, Offshore Gippsland Basin, Southeast Australia. *CO2CRC Publication No.* **RPT05-0114**, 41 p.

GIBSON-POOLE, C.M., SVENDSEN, L., UNDERSCHULTZ, J., WATSON, M.N., ENNIS-KING, J., VAN RUTH, P.J., NELSON, E.J., DANIEL, R.F. & CINAR, Y., 2008. Site characterisation of a basin scale CO<sub>2</sub> geological storage system: Gippsland Basin, southeast Australia. *Environmental Geology* **54**, pp. 1583-1606.

GILBERT, M.B. & HILL, K.A., 1994. Gippsland, a composite basin – a case study from the offshore Northern Strzelecki Terrace, Gippsland Basin, Australia. *Australian Petroleum Exploration Association Journal* **34**, pp. 495-511.

HILL, P.J., EXON, N.F., KEENE, J.B. & SMITH, S.M., 1998. The continental margin off east Tasmania and Gippsland: structure and development using new multibeam sonar data, *Exploration Geophysics* **29**, pp. 410-419.

HOCKING, J.B. 1976a. Definition and revision of Tertiary stratigraphic units, onshore Gippsland Basin. *Geological Survey of Victoria Report* **1976/1**.

HOCKING, J.B., 1976b. Gippsland Basin. *In* J.G. Douglas & J.A. Ferguson (eds) Geology of Victoria. *Geological Society of Australia Special Publication* **5**, 528 p.

HOCKING, J.B., 1988. Gippsland Basin. *In* J.G. Douglas & J.A. Ferguson (eds) Geology of Victoria. *Geological Society of Australia Special Publication* **5**, 665 p., 3 plates, 1 map.

HOLDGATE, G. & GALLAGHER, S. 1997. Microfossil paleoenvironments and sequence stratigraphy of Tertiary cool-water carbonates, onshore Gippsland Basin, southeastern Australia. *In* N.P. James, & J.D.A. Clarke (eds) Cool Water Carbonates, *Society of Economic Palaeontologists and Mineralogists Special Publication* **56**, pp. 205-220. HOLDGATE, G.R. & GALLAGHER, S.J., 2003. Tertiary – a period of transition to marine basin environments. *In* W.D Birch (ed.) Geology of Victoria. *Geological Society of Australia Special Publication* **23**, pp. 289-335.

HOLLOWAY, S. & SAVAGE, D., 1993. The potential for aquifer disposal of carbon dioxide in the UK. *Energy Conversion and Management* **34(9-11)**, pp. 925-932.

IRWIN, G., 1999. Cuttlefish-1 VIC/P40 Well Completion Report. *Amity Oil NL Report No.* **AYO231**. 9 p., figures, appendices.

JALFIN, G.A., 1994. Evaluacion de sellos en las secuencias Santoniana-Maastrichtianas de la Cuenca de Gippsland, Australia. *In* ACTAS *Quinta Reunion Argentina de Sedimentologia*, San Miguel de Tucumán, pp. 199-204.

JAMES, E.A. & EVANS, P.R., 1971. The Stratigraphy of the Offshore Gippsland Basin. *The APEA Journal* **11(1)**, pp. 71-74.

JOHNSTONE, E.M., JENKINS, C.C. & MOORE, M.A., 2001. An integrated structural and palaeogeographic investigation of Eocene erosional events and related hydrocarbon potential in the Gippsland Basin. *In* K.C. Hill & T. Bernecker (eds) *Eastern Australasian Basins Symposium: a refocused energy perspective for the future,* Petroleum Exploration Society of Australia, Special Publication, pp. 403-412.

KALDI, J.G. & ATKINSON, C.D., 1997. Evaluating seal Potential: Example from the Talang Akar Formation, Offshore Northwest Java, Indonesia. *In* R. C. Surdam (ed.) Seals, Traps and the Petroleum System, *AAPG Memoir* **67**, pp. 85-101.

LOWRY, D.C. & LONGLEY, I.M., 1991. A new model for the Mid-Cretaceous structural history of the northern Gippsland Basin. *Australian Petroleum Exploration Association Journal* **31**, pp. 143-153.

MARSHALL, N.G., 1989. An unusual assemblage of algal cysts from the Late Cretaceous, Gippsland Basin, southeastern Australia. *Palynology* **13**, pp. 21-56.

MARSHALL, N.G. & PARTRIDGE, A.P., 1986. Palynological analysis of Kipper-1, Gippsland Basin. *Esso Australia Ltd. Unpublished Report* **1986/18**, 21 p., 3 charts.

MARTIN, R.R., 1992. Petrofina Seal Analysis. *Amdel Core Services Pty Ltd Unpublished Report*. 45 p.

MEHIN, K. & BOCK, M.P., 1998. Cretaceous source rocks of the onshore eastern Gippsland Basin, Victoria. *Victorian Initiative for Minerals and Petroleum Report* **31**, 98 p.

MESSENT, B.E.J., 2000. Vic/P41: AFL Survey (#1421) Processing and Interpretation. *Bast Enterprises Pty Ltd Unpublished Report*. 49 p.

MOORE, D.H. & WONG, D., 2001. Down and Out in Gippsland: Using Potential Fields to Look Deeper and Wider for New Hydrocarbons. *In* K.C. Hill & T. Bernecker (eds) *Eastern Australasian Basins Symposium: a refocused energy perspective for the future,* Petroleum Exploration Society of Australia, Special Publication, pp. 363-371.

MULREADY, J., 2002. Lakes Oil exploration activities in Victoria update. *PESA News Victorian Supplement April/May* 2002. p. 10.

MURRAY, A.P., 1997. Report on oil in lake bottom from Lake King sediments, Lake Victoria and Lake Wellington. *Australian Geological Survey Organisation Unpublished Report*. 4 p.

NORVICK, M. & SMITH, M.A., 2001. Mapping the plate tectonic reconstructions of southern and southeastern Australia and implications for petroleum systems. *The APPEA Journal* **41(1)**, pp. 15-35.

NORVICK, M.S., SMITH, M.A. & POWER, M.R., 2001. The plate tectonic evolution of eastern Australasia guided by the stratigraphy of the Gippsland Basin. *In* K.C. Hill & T. Bernecker (eds) *Eastern Australasian Basins Symposium: a refocused energy perspective for the future*, Petroleum Exploration Society of Australia, Special Publication, pp. 15-23.

O'BRIEN, G.W., TINGATE, P.R., GOLDIE DIVKO, L.M., HARRISON, M.L., BOREHAM, C.J., LIU, K., ARIAN, N., & SKLADZIEN, P., 2008. First Order Sealing and Hydrocarbon Migration Processes, Gippsland Basin, Australia: Implications for CO<sub>2</sub> Geosequestration. *In* J.E. Blevin, B.E Bradshaw & C. Uruski (eds) *Eastern Australasian Basins Symposium III*, Petroleum Exploration Society of Australia, Special Publication, pp. 1-28.

PARTRIDGE, A.D., 1999. Late Cretaceous to Tertiary geological evolution of the Gippsland Basin, Victoria. PhD thesis, La Trobe University, Melbourne 439 p. POWER, M.R., HILL, K.C., HOFFMAN, N., BERNECKER, T. & NORVICK, M., 2001. The structural and tectonic evolution of the Gippsland Basin: Results from 2D section balancing and 3D structural modelling. *In* K.C. Hill & T. Bernecker (eds) *Eastern Australasian Basins Symposium: a refocused energy perspective for the future,* Petroleum Exploration Society of Australia, Special Publication, pp. 373-384.

RAHMANIAN, V.D., MOORE, P.S., MUDGE, W.J., & SPRING, D.E., 1990. Sequence stratigraphy and the habitat of hydrocarbons, Gippsland Basin, Australia. *In* J. Brooks (ed.) Classic Petroleum Provinces, *Geological Society Special Publication* **50**, pp. 525-541.

ROOT, R.S., GIBSON-POOLE, C.M., LANG, S.C., STREIT, J.E., UNDERSCHULTZ, J. & ENNIS-KING, J., 2004. Opportunities for geological storage of carbon dioxide in the offshore Gippsland Basin, SE Australia: an example from the upper Latrobe Group. *In* P.J. Boult, D.R. Johns & S.C. Lang (eds) *Eastern Australasian Basins Symposium II*, Petroleum Exploration Society of Australia, Special Publication, pp. 367-388.

SMITH, G.C., 1988. Oil and gas. *In* J.G. Douglas & J.A. Ferguson (eds) Geology of Victoria, *Geological Society of Australia Special Publication* **5**, pp. 514-531.

SUMMONS, R.E., MURRAY, A.P., REVILL, A. & VOLKMAN, J.K., 1998. Interim report: Petroleum hydrocarbons in Gippsland Lakes sediments. *Australian Geological Survey Organisation Unpublished Report*. 2 p. THOMAS, D.E. & BARAGWANATH, W., 1949. Geology of the Brown Coals of Victoria, Part 1. *Mining and Geological Journal, Department of Mines, Victoria* **3(6)**, pp. 28-55. 41

THOMPSON, B.R., 1986. The Gippsland Basin-Development and Stratigraphy. *In* R.C. Glenie (ed.) *Second South-Eastern Australia Oil Exploration Symposium*, Petroleum Exploration Society of Australia, pp. 57-64.

VAN DER MEER, L.G.H., 1992. Investigations regarding the storage of carbon dioxide in aquifers in the Netherlands. *Energy Conversion Management* **33(5-8)**, p.611-618.

WILLCOX, J.B., COLWELL, J.B., & CONSTANTINE, A.E., 1992. New ideas on Gippsland Basin regional tectonics. *In* C.M. Barton, K. Hill, C. Abele, J. Foster & N. Kempton (eds), *Energy, Economics and Environment Gippsland Basin Symposium*, Australasian Institute of Mining & Metallurgy, Melbourne Branch, pp. 93-110.

WILLCOX, J.B., SAYERS, J., STAGG, H.M.J. & VAN DE BEUQUE, S., 2001. Geological framework of the Lord Howe Rise and adjacent ocean basins. *In* K.C. Hill & T. Bernecker (eds) *Eastern Australasian Basins Symposium: a refocused energy perspective for the future,* Petroleum Exploration Society of Australia, Special Publication, pp. 211-225.

### Appendix 1

Lakes Entrance Formation tops and thicknesses identified in onshore and offshore wells, Gippsland Basin

| Well Name                    | Longitude     | Latitude     | KB | LEF       | LEF  | LEF  | LEF   | LEF   |
|------------------------------|---------------|--------------|----|-----------|------|------|-------|-------|
|                              |               |              |    | thickness | τορ  | Dase | (msl) | (msl) |
| Admiral 1                    | 148 38 55.23E | 38 09 06.62S | 21 | 238       | 998  | 1236 | 977   | 1215  |
| Albacore 1                   | 148 19 58.61E | 38 33 54.46S | 30 | 269       | 2250 | 2519 | 2220  | 2489  |
| Albatross 1                  | 148 03 05.59E | 37 57 34.36S | 10 | 79        | 628  | 707  | 618   | 697   |
| Amberjack 1                  | 147 18 59.71E | 38 29 27.94S | 21 | 123       | 1136 | 1259 | 1115  | 1238  |
| Anemone 1A                   | 148 19 53.25E | 38 45 46.92S | 27 | 180       | 2401 | 2581 | 2374  | 2554  |
| Angelfish 1                  | 148 22 53.40E | 38 14 37.38S | 21 | 171       | 1477 | 1648 | 1456  | 1627  |
| Angler 1                     | 148 26 33.71E | 38 39 29.86S | 27 | 290       | 2477 | 2767 | 2450  | 2740  |
| Archer 1                     | 148 18 41.52E | 38 46 01.56S | 28 | 169       | 2390 | 2559 | 2362  | 2531  |
| Athene 1                     | 148 27 24.78E | 38 35 46.60S | 23 | 285       | 2475 | 2760 | 2452  | 2737  |
| Avon 1                       | 147 08 17.61E | 38 02 49.50S | 9  | 125       | 610  | 735  | 601   | 726   |
| Ayu 1                        | 148 17 07.27E | 38 36 29.48S | 28 | 350       | 2140 | 2490 | 2112  | 2462  |
| Baleen 1                     | 148 26 12.97E | 38 00 31.085 | 9  | 126       | 512  | 638  | 503   | 629   |
| Baleen 2                     | 148 24 42.12E | 38 01 50.215 | 20 | /5        | 647  | 122  | 621   | 696   |
| Barracouta 1                 | 140 20 00.90E | 37 40 04.073 | 10 | 114       | 040  | 1054 | 020   | 1044  |
| Barracouta 2                 | 147 42 49.03E | 30 10 30.403 | 10 | 114       | 940  | 1004 | 930   | 1044  |
| Barracouta 3                 | 147 40 30.03L | 38 10 13 485 | 9  | 04        | 910  | 1020 | 907   | 1011  |
| Barracouta 4                 | 147 42 07 81F | 38 17 15 275 | 25 | 65        | 976  | 1041 | 951   | 1005  |
| Barracouta 5                 | 147 39 40 67F | 38 17 58 015 | 21 | 139       | 1044 | 1183 | 1023  | 1162  |
| Basker 1                     | 148 41 57 77E | 38 18 20 945 | 25 | 313       | 1807 | 2120 | 1782  | 2095  |
| Basker 2                     | 148 42 30.94E | 38 17 58.81S | 22 | 333       | 1755 | 2088 | 1733  | 2066  |
| Basker 5                     | 148 42 23.80E | 38 17 59.35S | 22 | 317       | 1786 | 2103 | 1764  | 2081  |
| Basker South 1               | 148 41 26.13E | 38 19 05.84S | 25 | 143       | 2067 | 2210 | 2042  | 2185  |
| Batfish 1                    | 148 24 17.58E | 38 13 28.48S | 10 | 229       | 1225 | 1454 | 1215  | 1444  |
| Baudin 1                     | 147 52 23.60E | 37 51 35.47S | 42 | 64        | 304  | 368  | 262   | 326   |
| Beardie 1                    | 147 48 29.26E | 38 15 10.69S | 25 | 124       | 1176 | 1195 | 1151  | 1170  |
| Bengworden South 6           | 147 25 40.04E | 38 03 31.18S | 2  | 110       | 849  | 959  | 847   | 957   |
| Bignose 1                    | 148 36 10.07E | 38 21 15.86S | 25 | 263       | 2260 | 2523 | 2235  | 2498  |
| Billfish 1                   | 148 33 19.23E | 38 40 07.45S | 31 | 182       | 2705 | 2887 | 2674  | 2856  |
| Blackback 1                  | 148 33 46.72E | 38 32 57.98S | 21 | 327       | 2570 | 2897 | 2549  | 2876  |
| Blackback 2                  | 148 32 40.69E | 38 33 22.70S | 22 | 236       | 2543 | 2779 | 2521  | 2757  |
| Blackback 3                  | 148 31 10.10E | 38 33 29.30S | 25 | 281       | 2540 | 2821 | 2515  | 2796  |
| Blenny 1                     | 147 24 56.69E | 38 28 18.15S | 23 | 130       | 1100 | 1230 | 1077  | 1207  |
| Bonita 1A                    | 148 17 14.31E | 38 33 41.86S | 30 | 278       | 2162 | 2440 | 2132  | 2410  |
| Bream 2                      | 147 47 50.73E | 38 31 16.19S | 9  | 242       | 1560 | 1802 | 1551  | 1793  |
| Bream 3                      | 147 46 19.64E | 38 30 41.48S | 28 | 232       | 1615 | 1847 | 1587  | 1819  |
| Bream 4A                     | 147 44 55.60E | 38 30 21.28S | 21 | 268       | 1590 | 1858 | 1569  | 1837  |
| Bream 5                      | 147 52 03.58E | 38 30 49.515 | 21 | 304       | 1560 | 1864 | 1539  | 1843  |
| Broadbill 1                  | 147 01 22.09E | 38 35 19.795 | 32 | 68        | /82  | 850  | 750   | 818   |
| Builseye 1<br>Bundalaguah 10 | 147 34 04.12E | 38 35 23.845 | 10 | 3/5       | 1697 | 2072 | 1687  | 2062  |
| Burong 1                     | 147 01 14.30E | 38 18 33 359 | 7  | 103       | 552  | 655  | 513   | 616   |
| Carrs Creek 1                | 147 11 50.27E | 38 17 26 485 | 27 | 103       | 584  | 686  | 557   | 659   |
| Chimaera 1                   | 147 13 39.39E | 38 15 50 815 | 25 | 430       | 1493 | 1923 | 1468  | 1898  |
| Cobia 1                      | 148 17 05 88F | 38 27 21 215 | 10 | 151       | 2232 | 2383 | 2222  | 2373  |
| Cobia 2                      | 148 18 20 94F | 38 27 25 955 | 25 | 228       | 2152 | 2380 | 2127  | 2355  |
| Cod 1                        | 147 58 37.62E | 38 21 37.47S | 10 | 285       | 1597 | 1882 | 1587  | 1872  |
| Colliers Hill 1              | 147 17 34.65E | 38 11 50.48S | 17 | 85        | 451  | 536  | 435   | 520   |
| Colguhoun East 6             | 148 07 11.56E | 37 47 09.46S | 40 | 35        | 144  | 179  | 104   | 139   |
| Colguhoun North 1            | 147 56 30.56E | 37 48 46.47S | 30 | 44        | 134  | 178  | 104   | 148   |
| Comley 1                     | 147 33 31.75E | 37 53 58.21S | 52 | 38        | 438  | 476  | 386   | 424   |
| Conger 1                     | 148 03 50.94E | 38 21 22.22S | 21 | 209       | 1605 | 1814 | 1584  | 1793  |
| Cuttlefish 1                 | 148 03 06.89E | 37 59 35.26S | 26 | 47        | 792  | 839  | 766   | 813   |
| Darriman 1                   | 147 00 34.61E | 38 26 58.49S | 36 | 85        | 452  | 537  | 416   | 501   |
| Dart 1                       | 148 55 32.78E | 38 08 06.40S | 10 | 191       | 731  | 922  | 721   | 912   |
| Deadman Hill 1               | 147 10 55.30E | 38 11 45.42S | 59 | 19        | 82   | 101  | 23    | 42    |
| Denison 53                   | 146 53 50.31E | 38 06 24.03S | 17 | 0         |      |      |       |       |
| Devilfish 1                  | 147 55 15.19E | 38 47 52.69S | 28 | 184       | 1461 | 1645 | 1433  | 1617  |
| Dolphin 1                    | 147 22 47.66E | 38 29 26.49S | 10 | 142       | 1050 | 1192 | 1040  | 1182  |

| Well Name                                                                                                     | Longitude                                                                                                                                                                                                                         | Latitude                                                                                                                                                                                                                                                                                                                                                                                     | KB                                                    | LEF                                                              | LEF                                                                        | LEF                                                                        | LEF                                                                        | LEF                                                                                |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------|
|                                                                                                               |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                              |                                                       | thickness                                                        | top                                                                        | base                                                                       | top                                                                        | base                                                                               |
|                                                                                                               |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                              |                                                       |                                                                  |                                                                            |                                                                            | (msl)                                                                      | (msl)                                                                              |
| Dome Frome 1                                                                                                  | 148 01 02.54E                                                                                                                                                                                                                     | 37 47 29.45S                                                                                                                                                                                                                                                                                                                                                                                 | 39                                                    | 0                                                                |                                                                            |                                                                            |                                                                            |                                                                                    |
| Dome Frome 2                                                                                                  | 148 02 34.56E                                                                                                                                                                                                                     | 37 46 33.46S                                                                                                                                                                                                                                                                                                                                                                                 | 15                                                    | 0                                                                |                                                                            |                                                                            |                                                                            |                                                                                    |
| Dome Frome 3                                                                                                  | 148 07 40.56E                                                                                                                                                                                                                     | 37 46 00.46S                                                                                                                                                                                                                                                                                                                                                                                 | 6                                                     | 0                                                                |                                                                            |                                                                            |                                                                            |                                                                                    |
| Dome Frome 4                                                                                                  | 148 05 08.57E                                                                                                                                                                                                                     | 37 49 08.46S                                                                                                                                                                                                                                                                                                                                                                                 | 43                                                    | 52                                                               | 304                                                                        | 356                                                                        | 261                                                                        | 313                                                                                |
| Drummer 1                                                                                                     | 148 15 02.94E                                                                                                                                                                                                                     | 38 28 28.46S                                                                                                                                                                                                                                                                                                                                                                                 | 21                                                    | 305                                                              | 2127                                                                       | 2432                                                                       | 2106                                                                       | 2411                                                                               |
| Duck Bay 1                                                                                                    | 147 39 40.69E                                                                                                                                                                                                                     | 37 56 39.18S                                                                                                                                                                                                                                                                                                                                                                                 | 24                                                    | 103                                                              | 579                                                                        | 682                                                                        | 555                                                                        | 658                                                                                |
| Dulungalong 2                                                                                                 | 147 18 09.88E                                                                                                                                                                                                                     | 38 11 57.89S                                                                                                                                                                                                                                                                                                                                                                                 | 8                                                     | 85                                                               | 440                                                                        | 525                                                                        | 432                                                                        | 517                                                                                |
| Dutson Downs 1                                                                                                | 147 21 49.58E                                                                                                                                                                                                                     | 38 11 54.51S                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                     | 130                                                              | 578                                                                        | 708                                                                        | 573                                                                        | 703                                                                                |
| East End 1                                                                                                    | 148 21 18.52E                                                                                                                                                                                                                     | 37 47 58.45S                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                     | 0                                                                |                                                                            |                                                                            |                                                                            |                                                                                    |
| East Halibut 1                                                                                                | 148 21 03.13E                                                                                                                                                                                                                     | 38 24 28.96S                                                                                                                                                                                                                                                                                                                                                                                 |                                                       | 225                                                              | 2170                                                                       | 2395                                                                       | 2149                                                                       | 2374                                                                               |
| East Kingfish 1                                                                                               | 148 12 41.34E                                                                                                                                                                                                                     | 38 35 01.84S                                                                                                                                                                                                                                                                                                                                                                                 | 21                                                    | 444                                                              | 2046                                                                       | 2490                                                                       | 2025                                                                       | 2469                                                                               |
| East Lake Tyers 1                                                                                             | 148 07 37.66E                                                                                                                                                                                                                     | 37 50 32.16S                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                     | 97                                                               | 296                                                                        | 393                                                                        | 291                                                                        | 388                                                                                |
| East Nowa 1                                                                                                   | 148 09 46 64F                                                                                                                                                                                                                     | 37 47 41 158                                                                                                                                                                                                                                                                                                                                                                                 | 62                                                    | 54                                                               | 221                                                                        | 275                                                                        | 160                                                                        | 214                                                                                |
| Fast Pilchard 1                                                                                               | 148 33 47 39E                                                                                                                                                                                                                     | 38 11 48 625                                                                                                                                                                                                                                                                                                                                                                                 | 25                                                    | 239                                                              | 1405                                                                       | 1644                                                                       | 1380                                                                       | 1619                                                                               |
| East Reeve 1                                                                                                  | 147 32 55 57E                                                                                                                                                                                                                     | 38 05 44 475                                                                                                                                                                                                                                                                                                                                                                                 | 4                                                     | 193                                                              | 989                                                                        | 1182                                                                       | 985                                                                        | 1178                                                                               |
| Edina 1                                                                                                       | 147 52 35.57E                                                                                                                                                                                                                     | 38 36 17 025                                                                                                                                                                                                                                                                                                                                                                                 | 31                                                    | 430                                                              | 1848                                                                       | 2278                                                                       | 1817                                                                       | 2247                                                                               |
| Emperor 1                                                                                                     | 147 32 40.33E                                                                                                                                                                                                                     | 38.05.48.465                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                     | 145                                                              | 1372                                                                       | 1517                                                                       | 1363                                                                       | 1508                                                                               |
| Eniperor 1                                                                                                    | 147 35 21 07E                                                                                                                                                                                                                     | 37 54 42 528                                                                                                                                                                                                                                                                                                                                                                                 | 13                                                    | 37                                                               | 406                                                                        | 533                                                                        | 453                                                                        | 400                                                                                |
| Flathoad 1                                                                                                    | 147 33 21.07                                                                                                                                                                                                                      | 38 01 15 449                                                                                                                                                                                                                                                                                                                                                                                 | 43                                                    | 52                                                               | 305                                                                        | 447                                                                        | 400                                                                        | 490                                                                                |
| Flatileau I                                                                                                   | 140 32 00.30E                                                                                                                                                                                                                     | 30 01 15.443                                                                                                                                                                                                                                                                                                                                                                                 | 9                                                     | 316                                                              | 1612                                                                       | 447                                                                        | 300                                                                        | 400                                                                                |
|                                                                                                               | 146 25 33.59E                                                                                                                                                                                                                     | 30 10 40.455                                                                                                                                                                                                                                                                                                                                                                                 | 20                                                    | 310                                                              | 1013                                                                       | 1929                                                                       | 1000                                                                       | 1901                                                                               |
| Flounder 2                                                                                                    | 140 20 37.07E                                                                                                                                                                                                                     | 30 19 11.145                                                                                                                                                                                                                                                                                                                                                                                 | 30                                                    | 341                                                              | 1020                                                                       | 1909                                                                       | 1090                                                                       | 1939                                                                               |
| Flounder 3                                                                                                    | 148 28 27.68E                                                                                                                                                                                                                     | 38 18 52.145                                                                                                                                                                                                                                                                                                                                                                                 | 30                                                    | 362                                                              | 1634                                                                       | 1996                                                                       | 1604                                                                       | 1966                                                                               |
| Flounder 4                                                                                                    | 148 29 51.51E                                                                                                                                                                                                                     | 38 18 18.025                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                    | 335                                                              | 1595                                                                       | 1930                                                                       | 1585                                                                       | 1920                                                                               |
| Flounder 5                                                                                                    | 142 00 23.61E                                                                                                                                                                                                                     | 38 12 28.495                                                                                                                                                                                                                                                                                                                                                                                 | 9                                                     | 322                                                              | 1590                                                                       | 1912                                                                       | 1581                                                                       | 1903                                                                               |
| Flounder 6                                                                                                    | 148 26 13.75E                                                                                                                                                                                                                     | 38 19 01.535                                                                                                                                                                                                                                                                                                                                                                                 | 25                                                    | 394                                                              | 1538                                                                       | 1932                                                                       | 1513                                                                       | 1907                                                                               |
| Flying Fish 1                                                                                                 | 147 21 56.85E                                                                                                                                                                                                                     | 38 20 45.09S                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                    | 148                                                              | 946                                                                        | 1094                                                                       | 936                                                                        | 1084                                                                               |
| Fortescue 1                                                                                                   | 148 14 23.99E                                                                                                                                                                                                                     | 38 22 22.76S                                                                                                                                                                                                                                                                                                                                                                                 | 25                                                    | 251                                                              | 2164                                                                       | 2415                                                                       | 2139                                                                       | 2390                                                                               |
| Fortescue 2                                                                                                   | 148 16 03.74E                                                                                                                                                                                                                     | 38 25 51.42S                                                                                                                                                                                                                                                                                                                                                                                 | 31                                                    | 252                                                              | 2168                                                                       | 2420                                                                       | 2137                                                                       | 2389                                                                               |
| Fortescue 3                                                                                                   | 148 16 06.90E                                                                                                                                                                                                                     | 38 23 17.57S                                                                                                                                                                                                                                                                                                                                                                                 | 31                                                    | 252                                                              | 2160                                                                       | 2412                                                                       | 2129                                                                       | 2381                                                                               |
| Fortescue 4                                                                                                   | 148 16 40.08E                                                                                                                                                                                                                     | 38 24 52.34S                                                                                                                                                                                                                                                                                                                                                                                 | 25                                                    | 270                                                              | 2138                                                                       | 2408                                                                       | 2113                                                                       | 2383                                                                               |
| Frome Lakes 4                                                                                                 | 147 15 34.59E                                                                                                                                                                                                                     | 37 59 02.51S                                                                                                                                                                                                                                                                                                                                                                                 | 38                                                    | 95                                                               | 432                                                                        | 527                                                                        | 394                                                                        | 489                                                                                |
| Gangell 1                                                                                                     | 147 11 53.14E                                                                                                                                                                                                                     | 38 18 47.85S                                                                                                                                                                                                                                                                                                                                                                                 | 40                                                    | 108                                                              | 568                                                                        | 676                                                                        | 528                                                                        | 636                                                                                |
| Gannet 1                                                                                                      | 148 08 13.12E                                                                                                                                                                                                                     | 37 54 15.01S                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                    | 89                                                               | 586                                                                        | 675                                                                        | 576                                                                        | 665                                                                                |
| Golden Beach 1A                                                                                               | 147 25 24.77E                                                                                                                                                                                                                     | 38 15 27.11S                                                                                                                                                                                                                                                                                                                                                                                 | 12                                                    | 89                                                               | 556                                                                        | 645                                                                        | 544                                                                        | 633                                                                                |
| Golden Beach West 1                                                                                           | 147 21 27.58E                                                                                                                                                                                                                     | 38 14 49.48S                                                                                                                                                                                                                                                                                                                                                                                 | 12                                                    | 119                                                              | 585                                                                        | 704                                                                        | 573                                                                        | 692                                                                                |
| Goon Nure 9                                                                                                   | 147 37 53.97E                                                                                                                                                                                                                     | 37 58 16.23S                                                                                                                                                                                                                                                                                                                                                                                 | 29                                                    | 129                                                              | 618                                                                        | 747                                                                        | 589                                                                        | 718                                                                                |
| Great White 1                                                                                                 | 148 37 42.45E                                                                                                                                                                                                                     | 38 27 01.68S                                                                                                                                                                                                                                                                                                                                                                                 | 31                                                    | 417                                                              | 2805                                                                       | 3222                                                                       | 2774                                                                       | 3191                                                                               |
| Groper 1                                                                                                      | 147 25 00.69E                                                                                                                                                                                                                     | 38 56 14.50S                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                    | 123                                                              | 808                                                                        | 931                                                                        | 798                                                                        | 921                                                                                |
| Groper 2                                                                                                      | 147 14 17.53E                                                                                                                                                                                                                     | 38 58 34.44S                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                    | 73                                                               | 687                                                                        | 760                                                                        | 677                                                                        | 750                                                                                |
| Grunter 1                                                                                                     | 148 31 00.83E                                                                                                                                                                                                                     | 38 16 15.74S                                                                                                                                                                                                                                                                                                                                                                                 | 21                                                    | 283                                                              | 1570                                                                       | 1853                                                                       | 1549                                                                       | 1832                                                                               |
| Gummy 1                                                                                                       | 148 44 25.85E                                                                                                                                                                                                                     | 38 17 54.00S                                                                                                                                                                                                                                                                                                                                                                                 | 28                                                    | 326                                                              | 1755                                                                       | 2081                                                                       | 1727                                                                       | 2053                                                                               |
| Gurnard 1                                                                                                     | 147 58 42.63E                                                                                                                                                                                                                     | 38 35 27.47S                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                    | 295                                                              | 1890                                                                       | 2185                                                                       | 1880                                                                       | 2175                                                                               |
| Halibut 1                                                                                                     | 148 19 01.60E                                                                                                                                                                                                                     | 38 23 52.46S                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                    | 372                                                              | 1910                                                                       | 2282                                                                       | 1900                                                                       | 2272                                                                               |
| Halibut 2                                                                                                     | 148 19 52.58E                                                                                                                                                                                                                     | 38 23 39.98S                                                                                                                                                                                                                                                                                                                                                                                 | 25                                                    | 291                                                              | 2040                                                                       | 2331                                                                       | 2015                                                                       | 2306                                                                               |
| Hammerhead 1                                                                                                  | 148 50 03.79E                                                                                                                                                                                                                     | 38 10 28.66S                                                                                                                                                                                                                                                                                                                                                                                 | 22                                                    | 233                                                              | 1058                                                                       | 1291                                                                       | 1036                                                                       | 1269                                                                               |
| Hapuku 1                                                                                                      | 148 33 00.88E                                                                                                                                                                                                                     | 38 33 14.51S                                                                                                                                                                                                                                                                                                                                                                                 | 9                                                     | 283                                                              | 2527                                                                       | 2810                                                                       | 2518                                                                       | 2801                                                                               |
| Harlequin 1                                                                                                   | 147 42 32.68E                                                                                                                                                                                                                     | 38 11 54.42S                                                                                                                                                                                                                                                                                                                                                                                 | 21                                                    | 195                                                              | 1213                                                                       | 1408                                                                       | 1192                                                                       | 1387                                                                               |
| Helios 1                                                                                                      | 148 16 38.68E                                                                                                                                                                                                                     | 38 41 34.91S                                                                                                                                                                                                                                                                                                                                                                                 | 23                                                    | 394                                                              | 2180                                                                       | 2574                                                                       | 2157                                                                       | 2551                                                                               |
| Hermes 1                                                                                                      |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                              |                                                       |                                                                  |                                                                            |                                                                            |                                                                            | 0.405                                                                              |
| Hunters Lane 1                                                                                                | 148 17 58.89E                                                                                                                                                                                                                     | 38 36 02.48S                                                                                                                                                                                                                                                                                                                                                                                 | 23                                                    | 348                                                              | 2160                                                                       | 2508                                                                       | 2137                                                                       | 2485                                                                               |
|                                                                                                               | 148 17 58.89E<br>147 58 30.00E                                                                                                                                                                                                    | 38 36 02.48S<br>37 51 54.21S                                                                                                                                                                                                                                                                                                                                                                 | 23<br>50                                              | 348<br>76                                                        | 2160<br>318                                                                | 2508<br>394                                                                | 2137<br>268                                                                | 2485<br>344                                                                        |
| Investigator 1                                                                                                | 148 17 58.89E<br>147 58 30.00E<br>147 36 50.69E                                                                                                                                                                                   | 38 36 02.48S<br>37 51 54.21S<br>37 54 44.17S                                                                                                                                                                                                                                                                                                                                                 | 23<br>50<br>35                                        | 348<br>76<br>66                                                  | 2160<br>318<br>510                                                         | 2508<br>394<br>576                                                         | 2137<br>268<br>476                                                         | 2485<br>344<br>542                                                                 |
| Investigator 1<br>Judith 1                                                                                    | 148 17 58.89E<br>147 58 30.00E<br>147 36 50.69E<br>148 33 24.68E                                                                                                                                                                  | 38 36 02.48S<br>37 51 54.21S<br>37 54 44.17S<br>38 09 12.91S                                                                                                                                                                                                                                                                                                                                 | 23<br>50<br>35<br>21                                  | 348<br>76<br>66<br>228                                           | 2160<br>318<br>510<br>1223                                                 | 2508<br>394<br>576<br>1451                                                 | 2137<br>268<br>476<br>1202                                                 | 2485<br>344<br>542<br>1430                                                         |
| Investigator 1<br>Judith 1<br>Kahawai 1                                                                       | 148       17       58.89E         147       58       30.00E         147       36       50.69E         148       33       24.68E         148       22       12.75E                                                                 | 38 36 02.48S           37 51 54.21S           37 54 44.17S           38 09 12.91S           38 10 15.30S                                                                                                                                                                                                                                                                                     | 23<br>50<br>35<br>21<br>21                            | 348<br>76<br>66<br>228<br>304                                    | 2160<br>318<br>510<br>1223<br>1086                                         | 2508<br>394<br>576<br>1451<br>1390                                         | 2137<br>268<br>476<br>1202<br>1065                                         | 2485<br>344<br>542<br>1430<br>1369                                                 |
| Investigator 1<br>Judith 1<br>Kahawai 1<br>Kingfish 1                                                         | 148 17 58.89E         147 58 30.00E         147 36 50.69E         148 33 24.68E         148 22 12.75E         148 12 39 62F                                                                                                       | 38 36 02.48S           37 51 54.21S           37 54 44.17S           38 09 12.91S           38 10 15.30S           38 35 44 47S                                                                                                                                                                                                                                                              | 23<br>50<br>35<br>21<br>21<br>10                      | 348<br>76<br>66<br>228<br>304<br>279                             | 2160<br>318<br>510<br>1223<br>1086<br>1971                                 | 2508<br>394<br>576<br>1451<br>1390<br>2250                                 | 2137<br>268<br>476<br>1202<br>1065<br>1961                                 | 2485<br>344<br>542<br>1430<br>1369<br>2240                                         |
| Investigator 1<br>Judith 1<br>Kahawai 1<br>Kingfish 1<br>Kinofish 2                                           | 148       17       58.89E         147       58       30.00E         147       36       50.69E         148       33       24.68E         148       22       12.75E         148       12       39.62E         148       10       17 | 38 36 02.48S         37 51 54.21S         37 54 44.17S         38 09 12.91S         38 10 15.30S         38 35 44.47S         38 35 51 16S                                                                                                                                                                                                                                                   | 23<br>50<br>35<br>21<br>21<br>10<br>9                 | 348<br>76<br>66<br>228<br>304<br>279<br>269                      | 2160<br>318<br>510<br>1223<br>1086<br>1971<br>1975                         | 2508<br>394<br>576<br>1451<br>1390<br>2250<br>2244                         | 2137<br>268<br>476<br>1202<br>1065<br>1961                                 | 2485<br>344<br>542<br>1430<br>1369<br>2240<br>2235                                 |
| Investigator 1<br>Judith 1<br>Kahawai 1<br>Kingfish 1<br>Kingfish 2<br>Kinofish 3                             | 148 17 58.89E         147 58 30.00E         147 36 50.69E         148 33 24.68E         148 22 12.75E         148 12 39.62E         148 10 17.73E         148 06 11 72E                                                           | 38         36         02.48S           37         51         54.21S           37         54         44.17S           38         09         12.91S           38         10         15.30S           38         35         44.47S           38         35         51.16S           38         34         57                                                                                    | 23<br>50<br>35<br>21<br>21<br>10<br>9<br>9            | 348<br>76<br>66<br>228<br>304<br>279<br>269<br>264               | 2160<br>318<br>510<br>1223<br>1086<br>1971<br>1975<br>1980                 | 2508<br>394<br>576<br>1451<br>1390<br>2250<br>2244<br>2244                 | 2137<br>268<br>476<br>1202<br>1065<br>1961<br>1966<br>1971                 | 2485<br>344<br>542<br>1430<br>1369<br>2240<br>2235<br>2235                         |
| Investigator 1<br>Judith 1<br>Kahawai 1<br>Kingfish 1<br>Kingfish 2<br>Kingfish 3<br>Kinofish 4               | 148 17 58.89E         147 58 30.00E         147 36 50.69E         148 33 24.68E         148 22 12.75E         148 12 39.62E         148 10 17.73E         148 06 11.72E         148 05 53 42E                                     | 38         36         02.48S           37         51         54.21S           37         54         44.17S           38         09         12.91S           38         10         15.30S           38         35         44.47S           38         35         51.16S           38         34         57.16S           38         35         49.38S                                         | 23<br>50<br>35<br>21<br>21<br>10<br>9<br>9            | 348<br>76<br>66<br>228<br>304<br>279<br>269<br>264<br>315        | 2160<br>318<br>510<br>1223<br>1086<br>1971<br>1975<br>1980<br>1922         | 2508<br>394<br>576<br>1451<br>1390<br>2250<br>2244<br>2244<br>2237         | 2137<br>268<br>476<br>1202<br>1065<br>1961<br>1966<br>1971<br>1912         | 2485<br>344<br>542<br>1430<br>1369<br>2240<br>2235<br>2235<br>2235                 |
| Investigator 1<br>Judith 1<br>Kahawai 1<br>Kingfish 1<br>Kingfish 2<br>Kingfish 3<br>Kingfish 4<br>Kingfish 5 | 148 17 58.89E         147 58 30.00E         147 36 50.69E         148 33 24.68E         148 22 12.75E         148 12 39.62E         148 10 17.73E         148 06 11.72E         148 05 53.42E         148 14 34 24F               | 38         36         02.48S           37         51         54.21S           37         54         44.17S           38         09         12.91S           38         10         15.30S           38         35         54.447S           38         35         51.16S           38         34         57.16S           38         35         49.38S           38         34         59.67S | 23<br>50<br>35<br>21<br>21<br>10<br>9<br>9<br>9<br>10 | 348<br>76<br>66<br>228<br>304<br>279<br>269<br>264<br>315<br>337 | 2160<br>318<br>510<br>1223<br>1086<br>1971<br>1975<br>1980<br>1922<br>1990 | 2508<br>394<br>576<br>1451<br>1390<br>2250<br>2244<br>2244<br>2237<br>2327 | 2137<br>268<br>476<br>1202<br>1065<br>1961<br>1966<br>1971<br>1912<br>1980 | 2485<br>344<br>542<br>1430<br>1369<br>2240<br>2235<br>2235<br>2225<br>2227<br>2317 |

| Well Name        | Longitude      | Latitude     | KB           | LEF       | LEF  | LEF   | LEF          | LEF           |
|------------------|----------------|--------------|--------------|-----------|------|-------|--------------|---------------|
|                  |                |              |              | thickness | top  | base  | top<br>(msl) | base<br>(msl) |
| Kingfish 7       | 148 05 04.13E  | 38 35 08.18S | 25           | 266       | 1993 | 2259  | 1968         | 2234          |
| Kingfish 8       | 148 03 42.57E  | 38 35 30.30S | 23           | 348       | 1923 | 2271  | 1900         | 2248          |
| Kingfish 9       | 148 08 59.72E  | 38 37 39.77S | 23           | 392       | 1912 | 2304  | 1889         | 2281          |
| Kipper 1         | 148 35 51.35E  | 38 10 30.30S | 21           | 356       | 1064 | 1420  | 1043         | 1399          |
| Kipper 2         | 148 36 49.77E  | 38 11 26.03S | 22           | 304       | 1235 | 1539  | 1213         | 1517          |
| Kyarra 1A        | 147 11 16.97E  | 38 40 47.04S | 31           | 94        | 919  | 1013  | 888          | 982           |
| Lake Reeve 1     | 147 15 24.60E  | 38 19 36.50S | 5            | 159       | 749  | 908   | 744          | 903           |
| Lakes Entrance 1 | 147 59 46.69E  | 37 51 54.15S | 52           | 64        | 324  | 388   | 272          | 336           |
| Leatherjacket 1  | 148 46 46.38E  | 38 05 11.29S | 21           | 110       | 635  | 745   | 614          | 724           |
| Longtom 1        | 148 18 58.79E  | 38 05 54.77S | 25           | 61        | 1184 | 1245  | 1159         | 1220          |
| Luderick 1       | 147 43 02.49E  | 38 26 15.10S | 21           | 248       | 1529 | 1777  | 1508         | 1756          |
| Macalister 1     | 147 08 19.92E  | 38 20 57.325 | 20           | 117       | 675  | 792   | 655          | 0070          |
| Mackerel 1       | 148 21 30.60E  | 38 28 48.465 | 30           | 182       | 2224 | 2406  | 2194         | 2376          |
| Mackerel 2       | 140 20 22.44E  | 20 29 00.403 | 10           | 144       | 2100 | 2310  | 2100         | 2300          |
|                  | 140 21 40.07 E | 38 30 44 385 | 10           | 201       | 2214 | 2379  | 2204         | 2309          |
| Manta 1          | 148 43 24 26E  | 38 16 21 755 | 25           | 422       | 1534 | 1956  | 1509         | 1031          |
| Marlin 1         | 148 13 37 68F  | 38 13 57 175 | 10           | 135       | 1244 | 1379  | 1234         | 1369          |
| Marlin 2         | 148 10 49 60F  | 38 15 53 46S | 10           | 100       | 1298 | 1442  | 1288         | 1432          |
| Marlin 3         | 148 10 20.71E  | 38 14 38.15S | 10           | 100       | 1340 | 1440  | 1330         | 1430          |
| Marlin 4         | 148 16 07.19E  | 38 14 18.91S | 10           | 185       | 1643 | 1828  | 1633         | 1818          |
| Mccreesh 1       | 147 06 21.75E  | 38 22 21.21S | 31           | 130       | 670  | 800   | 639          | 769           |
| Meerlieu 4       | 147 18 52.11E  | 38 01 18.85S | 20           | 141       | 684  | 825   | 664          | 805           |
| Meerlieu 15001   | 147 17 07.23E  | 38 00 22.92S | 33           | 140       | 580  | 720   | 547          | 687           |
| Megamouth 1      | 148 16 31.85E  | 38 35 44.23S | 22           | 378       | 2087 | 2465  | 2065         | 2443          |
| Melville 1       | 147 59 13.13E  | 38 40 57.15S | 25           | 388       | 1830 | 2218  | 1805         | 2193          |
| Merriman 1       | 147 10 47.59E  | 38 20 46.51S | 24           | 70        | 625  | 695   | 601          | 671           |
| Moonfish 1       | 148 00 35.21E  | 38 08 54.95S | 23           | 220       | 1385 | 1605  | 1362         | 1582          |
| Moonfish 2       | 148 01 23.53E  | 38 08 52.16S | 31           | 189       | 1370 | 1559  | 1339         | 1528          |
| Moray 1          | 148 03 25.25E  | 38 51 42.58S | 10           | 218       | 1422 | 1640  | 1412         | 1630          |
| Morwong 1        | 148 18 49.91E  | 38 13 37.08S | 10           | 160       | 1493 | 1653  | 1483         | 1643          |
| Mudskipper 1     | 148 08 02.84E  | 38 54 26.07S | 27           | 255       | 1220 | 1475  | 1193         | 1448          |
| Mullet 1         | 147 51 26.68E  | 39 12 56.49S | 10           | 70        | 620  | 690   | 610          | 680           |
| Mulloway 1       | 147 29 06.43E  | 38 19 18.75S | 21           | 137       | 990  | 1127  | 969          | 1106          |
| Mullungdung 7    | 146 55 46.63E  | 38 22 55.09S | 85           | 17        | 348  | 365   | 263          | 280           |
| Mullungdung 8    | 146 53 27.94E  | 38 23 14.87S | 131          | 0         | 1000 | 0.400 | 1000         |               |
| Nannygai 1       | 147 59 50.63E  | 38 33 05.47S | 10           | 260       | 1932 | 2192  | 1922         | 2182          |
| NINDOO 2         | 147 19 26.90E  | 37 52 27.715 | 75           | 58        | 292  | 350   | 217          | 275           |
| Northinght 1     | 149 09 03.4 IE | 37 55 52.465 | 25           | 105       | 470  | E7E   | 146          | 551           |
| Oilco 1          | 147 12 20.40E  | 37 51 42 485 | <u>4</u><br> | 83        | 321  | 404   | 270          | 362           |
| Omeo 1           | 147 43 06 90F  | 38 36 39 505 | 31           | 306       | 1882 | 2188  | 1851         | 2157          |
| Omeo 2A          | 147 42 43 01F  | 38 36 16 355 | 22           | 300       | 1882 | 2182  | 1860         | 2160          |
| Opah 1           | 148 16 47 17F  | 38 31 38 875 | 25           | 253       | 2152 | 2405  | 2127         | 2380          |
| Orange Roughy 1  | 148 02 35.61E  | 38 34 51.59S | 25           | 365       | 1910 | 2275  | 1885         | 2250          |
| Palmer 1         | 147 19 51.52E  | 38 33 43.83S | 21           | 131       | 1055 | 1186  | 1034         | 1165          |
| Patricia 1       | 148 26 51.83E  | 38 01 47.44S | 22           | 45        | 655  | 700   | 633          | 678           |
| Patrobus 1       | 148 33 18.85E  | 37 47 44.13S | 21           | 0         |      |       |              |               |
| Patties Pies 1   | 147 40 32.11E  | 37 50 58.46S | 5            | 23        | 250  | 273   | 245          | 268           |
| Paynesville 1    | 147 40 25.89E  | 37 54 47.18S | 30           | 39        | 530  | 569   | 500          | 539           |
| Perch 1          | 147 19 28.67E  | 38 34 31.50S | 10           | 131       | 975  | 1106  | 965          | 1096          |
| Perch 2          | 147 20 02.28E  | 38 34 17.61S | 21           | 118       | 1000 | 1118  | 979          | 1097          |
| Perch 3          | 147 19 21.42E  | 38 34 09.47S | 42           | 122       | 974  | 1096  | 932          | 1054          |
| Petro Tech 1     | 147 59 39.67E  | 37 24 49.48S | 49           | 80        | 301  | 381   | 252          | 332           |
| Pike 1           | 147 57 05.37E  | 38 46 23.53S | 10           | 217       | 1611 | 1828  | 1601         | 1818          |
| Pilotfish 1A     | 148 28 13.13E  | 38 25 52.90S | 21           | 380       | 2535 | 2915  | 2514         | 2894          |
| Pisces 1         | 148 30 47.19E  | 39 03 30.38S | 22           | 321       | 1475 | 1796  | 1453         | 1774          |
| Protea 1         | 147 08 53.98E  | 38 11 24.82S | 51           | 0         |      |       |              |               |
| Remora 1         | 148 11 33.80E  | 38 09 08.53S | 22           | 384       | 1700 | 2084  | 1678         | 2062          |

| Well Name               | Longitude     | Latitude       | KB | LEF       | LEF  | LEF  | LEF   | LEF   |
|-------------------------|---------------|----------------|----|-----------|------|------|-------|-------|
|                         |               |                |    | thickness | top  | base | top   | base  |
|                         |               |                |    |           |      |      | (msl) | (msl) |
| Rockling 1              | 148 13 50.38E | 38 27 29.08S   | 31 | 277       | 2215 | 2492 | 2184  | 2461  |
| Roundhead 1             | 148 13 32.70E | 38 36 59.85S   | 21 | 346       | 2032 | 2378 | 2011  | 2357  |
| Sale 13                 | 147 13 05.71E | 38 06 53.64S   | 1  | 125       | 687  | 812  | 686   | 811   |
| Sale 15                 | 147 02 43.03E | 38 04 34.17S   | 12 | 85        | 660  | 745  | 648   | 733   |
| Salmon 1                | 147 59 19.62E | 38 25 09.47S   | 30 | 229       | 1760 | 1989 | 1730  | 1959  |
| Salt Lake 1             | 147 05 16.67E | 38 26 47.50S   | 23 | 127       | 650  | 777  | 627   | 754   |
| Sawbelly 1              | 148 02 10.52E | 38 22 25.47S   | 21 | 284       | 1700 | 1984 | 1679  | 1963  |
| Seacombe 7              | 147 28 01.58E | 38 05 08.17S   | 9  | 176       | 862  | 1038 | 853   | 1029  |
| Seacombe South 1        | 151 39 07.95E | 85 17 12.95S   | 2  | 121       | 960  | 1081 | 958   | 1079  |
| Seahorse 1              | 147 40 26.95E | 38 11 42.43S   | 25 | 209       | 1180 | 1389 | 1155  | 1364  |
| Seahorse 2              | 147 39 24.79E | 38 12 07.76S   | 21 | 233       | 1160 | 1393 | 1139  | 1372  |
| Selene 1                | 148 26 15.95E | 38 37 19.62S   | 23 | 336       | 2486 | 2822 | 2463  | 2799  |
| Shark 1                 | 149 03 12.05E | 38 15 28.73S   | 28 | 290       | 1526 | 1816 | 1498  | 1788  |
| Signal Hill 1           | 147 18 49.59E | 38 14 19.50S   | 28 | 126       | 555  | 681  | 527   | 653   |
| Smiler 1                | 148 23 21.71E | 38 28 49.64S   | 25 | 199       | 2308 | 2507 | 2283  | 2482  |
| Snapper 1               | 148 00 54.63E | 38 11 57.47S   | 10 | 125       | 1088 | 1213 | 1078  | 1203  |
| Snapper 2               | 148 02 41.71E | 38 11 10.17S   | 10 | 153       | 1047 | 1200 | 1037  | 1190  |
| Snapper 3               | 147 59 15.70E | 38 12 39.17S   | 10 | 205       | 1067 | 1272 | 1057  | 1262  |
| Snapper 4               | 148 00 18.62E | 38 12 48.85S   | 21 | 214       | 1046 | 1260 | 1025  | 1239  |
| Snapper 5               | 147 59 27.08E | 38 13 12.13S   | 21 | 190       | 1102 | 1292 | 1081  | 1271  |
| Snapper 6               | 148 00 46 61F | 38 13 50 03S   | 21 | 177       | 1155 | 1332 | 1134  | 1311  |
| Snook 1                 | 147 24 22.52E | 38 19 35.95S   | 21 | 127       | 1000 | 1127 | 979   | 1106  |
| Sole 1                  | 149 02 08 94F | 38 06 53 92S   | 10 | 170       | 640  | 810  | 630   | 800   |
| Sole 2                  | 149 00 33 55E | 38 06 13 08S   | 25 | 205       | 570  | 775  | 545   | 750   |
| South West Bairnsdale 1 | 147 22 02 60F | 37 52 00 48S   | 72 | 59        | 315  | 374  | 243   | 302   |
| Sneke 1                 | 147 37 16 39E | 38 30 29 135   | 22 | 198       | 1622 | 1820 | 1600  | 1798  |
| Sperm Whale 1           | 148 21 56 24E | 38.03.20.325   | 9  | 93        | 708  | 801  | 600   | 792   |
| Sperm Whale Head 1      | 147 42 24 68F | 37 57 54 185   | 9  | 127       | 642  | 769  | 633   | 760   |
| Spoon Bay 1             | 147 28 01 88E | 38 04 50 685   | q  | 147       | 875  | 1022 | 866   | 1013  |
| St Margaret Island 1    | 146 50 09 83E | 38 38 10 215   | 8  | 56        | 548  | 604  | 540   | 596   |
| Stonefish 1             | 148 33 39 36E | 38 14 56 64 5  | 10 | 95        | 1708 | 1803 | 1698  | 1793  |
| Stringy Bark 1          | 146 54 06 56E | 38 30 56 525   | 30 | 58        | 320  | 378  | 281   | 330   |
| Sunfich 1               | 140 34 00.30L | 38.08.20.205   | 10 | 151       | 1521 | 1682 | 1521  | 1672  |
| Sunfish 2               | 140 13 42.17  | 38 08 17 045   | 21 | 151       | 1/59 | 1610 | 1/27  | 1580  |
| Swoon 1                 | 140 14 44.09L | 38 03 21 179   | 21 | 102       | 615  | 756  | 500   | 731   |
| Sweep 1                 | 140 30 17.34  | 38 05 41 769   | 20 | 141       | 1361 | 1505 | 1340  | 1/0/  |
| Sweetlips 1             | 140 02 13.20L | 20 22 20 520   | 21 | 260       | 1720 | 1000 | 1705  | 1074  |
| Toilor 1                | 140 00 20.03E | 20 20 26 465   | 20 | 209       | 2110 | 1999 | 2100  | 2206  |
|                         | 140 10 29.01L | 20 20 21 646   | 21 | 200       | 1750 | 2400 | 1701  | 2390  |
| Tanuking 1              | 147 42 12.00E | 20 24 11 045   | 21 | 300       | 1132 | 2140 | 1140  | 2109  |
| Tarwillite 1            | 147 31 45.93E | 20 22 4 11.043 | 21 | 175       | 2125 | 2421 | 21149 | 2400  |
| Teragilii 1             | 140 20 34.73E | 30 22 45.455   | 21 | 200       | 2100 | 2421 | 2114  | 2400  |
|                         | 140 32 47.70E | 30 30 15.135   | 21 | 300       | 2007 | 2037 | 2010  | 2010  |
|                         | 140 15 27.07E | 27 46 21 466   | 20 | 219       | 21/0 | 2397 | 2100  | 2379  |
|                         | 140 10 00.00E | 37 40 31.105   | 40 | 0C<br>101 | 102  | 200  | 775   | 076   |
|                         | 147 08 38.38E | 38 36 41.915   | 21 | 101       | 796  | 897  | 1/5   | 8/6   |
|                         | 147 29 54.66E | 38 26 43.455   | 21 | 253       | 1078 | 1331 | 1057  | 1310  |
|                         | 148 23 44.59E | 38 17 17.455   | 10 | 284       | 1650 | 1934 | 1640  | 1924  |
|                         | 147 11 34.43E | 38 18 10.055   | 30 | 140       | 546  | 080  | 516   | 050   |
| Turne 4                 | 148 21 02.01E | 38 24 42 995   | 21 | 263       | 2185 | 2448 | 2164  | 2427  |
|                         | 148 25 U7.58E | 38 10 19.455   | 10 | 259       | 1052 | 1311 | 1042  | 1301  |
|                         | 148 23 18.65E | 38 10 46 165   | 10 | 260       | 1070 | 1330 | 1060  | 1320  |
| Tuna 3                  | 148 26 54.67E | 38 10 04.135   | 10 | 240       | 1085 | 1325 | 1075  | 1315  |
| iuna 4                  | 148 22 12.68E | 38 11 15.45S   | 21 | 270       | 1100 | 1370 | 1079  | 1349  |
|                         | 148 14 45.60E | 38 12 04 46S   | 30 | 342       | 1600 | 1942 | 1570  | 1912  |
| Turrum 2                | 148 15 01.02E | 38 14 33.60S   | 10 | 173       | 1373 | 1546 | 1363  | 1536  |
| I urrum 3               | 148 15 03.57E | 38 15 35.50S   | 21 | 248       | 1323 | 1571 | 1302  | 1550  |
| Turrum 4                | 148 15 48.75E | 38 16 34.04S   | 23 | 391       | 1528 | 1919 | 1505  | 1896  |
| Turrum 5                | 148 12 08.68E | 38 14 50.00S   | 25 | 94        | 1292 | 1386 | 1267  | 1361  |
| Turrum 6                | 148 10 29.56E | 38 14 05.55S   | 25 | 146       | 1314 | 1460 | 1289  | 1435  |

| Well Name         | Longitude     | Latitude     | KB | LEF       | LEF  | LEF  | LEF          | LEF           |
|-------------------|---------------|--------------|----|-----------|------|------|--------------|---------------|
|                   |               |              |    | thickness | top  | base | top<br>(msl) | base<br>(msl) |
| Turrum 7          | 148 15 53.91E | 38 15 46.42S | 26 | 244       | 1520 | 1764 | 1494         | 1738          |
| Veilfin 1         | 148 00 13.00E | 38 24 56.90S | 21 | 278       | 1708 | 1986 | 1687         | 1965          |
| Volador 1         | 148 32 41.35E | 38 25 22.71S | 25 | 375       | 2563 | 2938 | 2538         | 2913          |
| Wahoo 1           | 148 44 52.55E | 38 01 36.43S | 9  | 60        | 369  | 429  | 360          | 420           |
| Wellington Park 2 | 147 20 59.63E | 38 08 02.48S | 5  | 67        | 624  | 691  | 619          | 686           |
| West Fortescue 1  | 148 14 28.34E | 38 21 50.79S | 21 | 205       | 2216 | 2421 | 2195         | 2400          |
| West Halibut 1    | 148 17 01.47E | 38 24 07.73S | 25 | 247       | 2127 | 2374 | 2102         | 2349          |
| West Seahorse 1   | 147 37 26.33E | 38 12 11.65S | 9  | 210       | 1170 | 1380 | 1161         | 1371          |
| West Seahorse 2   | 147 36 43.16E | 38 12 16.32S | 9  | 212       | 1193 | 1405 | 1184         | 1396          |
| Whale 1           | 148 33 38.73E | 38 01 11.62S | 9  | 35        | 404  | 439  | 395          | 430           |
| Whaleshark 1      | 148 53 30.64E | 38 23 39.52S | 22 | 110       | 2612 | 2722 | 2590         | 2700          |
| Whiptail 1A       | 147 31 14.23E | 38 19 24.84S | 21 | 140       | 985  | 1125 | 964          | 1104          |
| Whiting 1         | 147 53 05.55E | 38 14 06.24S | 21 | 118       | 1164 | 1282 | 1143         | 1261          |
| Whiting 2         | 147 51 19.16E | 38 14 59.15S | 21 | 86        | 1177 | 1263 | 1156         | 1242          |
| Wirrah 1          | 147 49 01.74E | 38 11 16.80S | 21 | 174       | 1291 | 1465 | 1270         | 1444          |
| Wirrah 2          | 147 49 31.21E | 38 10 55.41S | 21 | 191       | 1297 | 1488 | 1276         | 1467          |
| Wirrah 3          | 147 48 31.91E | 38 11 43.87S | 21 | 183       | 1306 | 1489 | 1285         | 1468          |
| Wrixondale 1      | 147 29 52.80E | 37 59 37.00S | 26 | 154       | 629  | 783  | 603          | 757           |
| Wombat 1          | 147 09 37.19E | 38 21 09.71S | 15 | 90        | 603  | 693  | 588          | 678           |
| Wonga Binda 1     | 147 02 30.50E | 38 26 57.04S | 30 | 60        | 530  | 590  | 500          | 560           |
| Woodside 2        | 146 53 46.66E | 38 37 37.53S | 9  | 58        | 701  | 759  | 692          | 750           |
| Woodside 12       | 146 59 23.36E | 38 32 05.64S | 4  | 116       | 752  | 868  | 748          | 864           |
| Woodside South 1  | 146 54 34.80E | 38 34 19.21S | 14 | 80        | 512  | 592  | 498          | 578           |
| Wooundellah 10    | 146 57 36.83E | 38 05 54.97S | 29 | 38        | 362  | 400  | 333          | 371           |
| Wooundellah 11    | 146 55 51.67E | 38 06 06.63S | 30 | 31        | 372  | 403  | 342          | 373           |
| Wrixondale 1      | 147 29 52.68E | 37 59 37.29S | 26 | 141       | 629  | 770  | 603          | 744           |
| Wurruk Wurruk 13  | 147 01 06.69E | 38 06 56.11S | 21 | 68        | 585  | 653  | 564          | 632           |
| Wyrallah 1        | 147 05 09.59E | 38 40 31.31S | 21 | 103       | 771  | 874  | 750          | 853           |
| Yellowtail 1      | 148 16 31.34E | 38 31 28.97S | 21 | 254       | 2151 | 2405 | 2130         | 2384          |
| Yellowtail 2      | 148 16 59.55E | 38 31 54.14S | 21 | 245       | 2163 | 2408 | 2142         | 2387          |

### Appendix 2

ACS Laboratories (A) Interpreted Capillary Pressure charts, (B) Capillary Pressure plots and (C) Pore Size Distribution plots from Mercury Injection Capillary Pressure analysis of 37 core samples.

| Well         |  |
|--------------|--|
| Sample Depth |  |

Barracouta-1 1021.95 m



| Client           | Geoscience Victoria |                     |                  |                  |                  |           | Conversion Parameters |                         |              |           |                   |                   |  |
|------------------|---------------------|---------------------|------------------|------------------|------------------|-----------|-----------------------|-------------------------|--------------|-----------|-------------------|-------------------|--|
| Well             | Barracouta-1        |                     |                  |                  |                  |           |                       |                         |              | air/water | air/oil           | oil/water         |  |
|                  |                     |                     |                  |                  |                  |           | Laboratory Theta      |                         |              | 0.0       | 0.0               | 30.0              |  |
| Test Method      | Air/Mercury Ca      | pillary Pressure Dr | ainage           |                  |                  |           | Laboratory IFT        |                         |              | 72.0      | 24.0              | 48.0              |  |
| e 1              | Demas and a         |                     |                  |                  |                  |           | Reservoir Theta       |                         |              | 0.0       |                   | 30.0              |  |
| Sample           | 1021 95             | m                   |                  | Ambient Permer   | admity<br>v      |           | Laboratory TcosT      | Theta                   |              | 72.0      | 24.0              | 42.0              |  |
| Deptil           | 1021.95             |                     |                  | Amblent i orosit | 3                |           | Reservoir TcosTh      | ieta                    |              | 50.0      | 24.0              | 26.0              |  |
| pore radius (µm) | )                   |                     |                  |                  |                  |           | D                     | ensity Gradients, psi/f | oot          |           |                   |                   |  |
| 0.063            | Entry Pressure (    | psia)               | Displacement Pre | essure (psia)    | Threshold Pressu | re (psia) |                       | _                       | Typical      | ]         |                   |                   |  |
| System           | Lab<br>1702         | Resv                | Lab              | Resv             | Lab<br>2001      | Resv      | Water:                |                         | 0.440        |           |                   |                   |  |
| G-W              | 334.1               | 232.0               | 549.3            | 381.5            | 588.8            | 408.9     | Gas:                  |                         | 0.100        |           |                   |                   |  |
| O-W              | 111.4               | 120.6               | 183.1            | 198.4            | 196.3            | 212.6     |                       |                         |              | 1         |                   |                   |  |
|                  |                     |                     |                  |                  |                  |           |                       |                         |              |           |                   |                   |  |
| Processo         |                     | Intrusion           |                  | Saturation       |                  | Pore      | Equivalent            | Injection Pressures     | O/P Lab      | O/P Par   | Height Above Free | Height Above Free |  |
| (psia)           |                     | (percent)           |                  | (percent)        |                  | (μm)      | A/B Lab               | A/D Res                 | O/B Lab      | 0/B Res   | Oil-Water         | Gas-Water         |  |
| 1.00             |                     | 0.0                 |                  | 0.0              |                  | 212       | 0.20                  | 0.14                    | 0.11         | 0.07      | 0.64              | 0.40              |  |
| 1.00             |                     | 0.0                 |                  | 0.0              |                  | 213       | 0.20                  | 0.14                    | 0.11         | 0.07      | 0.64              | 0.40              |  |
| 1.98             |                     | 0.0                 |                  | 0.0              |                  | 107       | 0.39                  | 0.27                    | 0.23         | 0.14      | 1.28              | 0.79              |  |
| 2.73             |                     | 0.0                 |                  | 0.0              |                  | 77.7      | 0.54                  | 0.37                    | 0.31         | 0.19      | 1.76              | 1.09              |  |
| 3.18             |                     | 0.0                 |                  | 0.0              |                  | 66.7      | 0.62                  | 0.43                    | 0.36         | 0.23      | 2.05              | 1.27              |  |
| 3.73             |                     | 0.0                 |                  | 0.0              |                  | 56.9      | 0.73                  | 0.51                    | 0.43         | 0.26      | 2.40              | 1.49              |  |
| 5.18             |                     | 0.0                 |                  | 0.0              |                  | 40.9      | 1.0                   | 0.71                    | 0.59         | 0.37      | 3.34              | 2.07              |  |
| 5.98             |                     | 0.0                 |                  | 0.0              |                  | 35.5      | 1.2                   | 0.81                    | 0.68         | 0.42      | 3.85              | 2.39              |  |
| 6.97             |                     | 0.0                 |                  | 0.0              |                  | 30.4      | 1.4                   | 0.95                    | 0.80         | 0.49      | 4.49              | 2.79              |  |
| 8.27             |                     | 0.0                 |                  | 0.0              |                  | 25.6      | 1.6                   | 1.1                     | 0.95         | 0.59      | 5.33              | 3.31              |  |
| 9.9/             |                     | 0.0                 |                  | 0.0              |                  | 21.5      | 2.0                   | 1.4                     | 1.1          | 0.71      | 0.42              | 5.99<br>4.61      |  |
| 13.5             |                     | 0.0                 |                  | 0.0              |                  | 15.7      | 2.6                   | 1.8                     | 1.5          | 0.96      | 8.69              | 5.41              |  |
| 15.5             |                     | 0.0                 |                  | 0.0              |                  | 13.7      | 3.0                   | 2.1                     | 1.8          | 1.1       | 9.98              | 6.21              |  |
| 18.5             |                     | 0.0                 |                  | 0.0              |                  | 11.5      | 3.6                   | 2.5                     | 2.1          | 1.3       | 11.91             | 7.41              |  |
| 21.6             |                     | 0.0                 |                  | 0.0              |                  | 9.83      | 4.2                   | 2.9                     | 2.5          | 1.5       | 16.29             | 8.65              |  |
| 30.0             |                     | 0.0                 |                  | 0.0              |                  | 7.08      | 5.9                   | 4.1                     | 3.4          | 2.1       | 19.32             | 12.01             |  |
| 39.9             |                     | 0.0                 |                  | 0.0              |                  | 5.32      | 7.8                   | 5.4                     | 4.6          | 2.8       | 25.70             | 15.98             |  |
| 48.5             |                     | 0.0                 |                  | 0.0              |                  | 4.38      | 9.5                   | 6.6                     | 5.6          | 3.4       | 31.24             | 19.42             |  |
| 58.9             |                     | 0.0                 |                  | 0.0              |                  | 3.60      | 12                    | 8.0                     | 6.7          | 4.2       | 37.93             | 23.59             |  |
| 79.7             |                     | 0.0                 |                  | 0.0              |                  | 2.66      | 16                    | 11                      | 9.1          | 5.6       | 51.33             | 31.92             |  |
| 92.5             |                     | 0.0                 |                  | 0.0              |                  | 2.29      | 18                    | 13                      | 11           | 6.6       | 59.57             | 37.05             |  |
| 112              |                     | 0.0                 |                  | 0.0              |                  | 1.89      | 22                    | 15                      | 13           | 7.9       | 72.13             | 44.85             |  |
| 130              |                     | 0.0                 |                  | 0.0              |                  | 1.63      | 25                    | 18                      | 15           | 9.2       | 83.73             | 52.06             |  |
| 181              |                     | 0.0                 |                  | 0.0              |                  | 1.17      | 35                    | 25                      | 21           | 13        | 116.6             | 72.49             |  |
| 211              |                     | 0.0                 |                  | 0.0              |                  | 1.00      | 41                    | 29                      | 24           | 15        | 135.9             | 84.50             |  |
| 247              |                     | 0.0                 |                  | 0.0              |                  | 0.858     | 48                    | 34                      | 28           | 17        | 159.1             | 98.92             |  |
| 290              |                     | 0.0                 |                  | 0.0              |                  | 0.730     | 57                    | 39<br>47                | 33           | 21        | 186.8             | 137.0             |  |
| 402              |                     | 0.0                 |                  | 0.0              |                  | 0.527     | 79                    | 55                      | 46           | 28        | 258.9             | 161.0             |  |
| 473              |                     | 0.0                 |                  | 0.0              |                  | 0.448     | 93                    | 64                      | 54           | 34        | 304.6             | 189.4             |  |
| 554              |                     | 0.0                 |                  | 0.0              |                  | 0.383     | 109                   | 75                      | 63           | 39        | 356.8             | 221.9             |  |
| 757              |                     | 0.0                 |                  | 0.0              |                  | 0.280     | 148                   | 103                     | 87           | 46<br>54  | 487.5             | 303.2             |  |
| 889              |                     | 0.0                 |                  | 0.0              |                  | 0.239     | 174                   | 121                     | 102          | 63        | 572.6             | 356.0             |  |
| 1048             |                     | 0.0                 |                  | 0.0              |                  | 0.202     | 205                   | 143                     | 120          | 74        | 675.0             | 419.7             |  |
| 1228             |                     | 0.0                 |                  | 0.0              |                  | 0.173     | 241                   | 16/                     | 141          | 87        | 790.9             | 491.8             |  |
| 1687             |                     | 0.0                 |                  | 0.0              |                  | 0.146     | 331                   | 230                     | 193          | 120       | 1086              | 675.6             |  |
| 1828             |                     | 0.6                 |                  | 0.0              |                  | 0.116     | 358                   | 249                     | 209          | 130       | 1177              | 732.1             |  |
| 2143             |                     | 1.0                 |                  | 1.0              |                  | 0.0989    | 420                   | 292                     | 245          | 152       | 1380              | 858.2             |  |
| 2507             |                     | 1.0                 |                  | 2.6              |                  | 0.0846    | 492                   | 541<br>401              | 26/<br>337   | 209       | 1896              | 1004              |  |
| 3447             |                     | 22.3                |                  | 29.3             |                  | 0.0615    | 676                   | 469                     | 394          | 244       | 2220              | 1380              |  |
| 4038             |                     | 27.1                |                  | 56.4             |                  | 0.0525    | 792                   | 550                     | 462          | 286       | 2601              | 1617              |  |
| 4732             |                     | 18.9                |                  | 75.3             |                  | 0.0448    | 928                   | 644<br>697              | 542<br>586   | 335       | 3048              | 1895              |  |
| 6004             |                     | 7.5                 |                  | 87.8             |                  | 0.0414    | 1177                  | 818                     | 687          | 425       | 3867              | 2405              |  |
| 7032             |                     | 5.7                 |                  | 93.5             |                  | 0.0301    | 1379                  | 958                     | 805          | 498       | 4529              | 2816              |  |
| 7896             |                     | 3.6                 |                  | 97.0             |                  | 0.0268    | 1548                  | 1075                    | 904          | 559       | 5085              | 3162              |  |
| 8927             |                     | 2.2                 |                  | 99.2             |                  | 0.0237    | 1/50                  | 1216                    | 1022         | 632       | 5749              | 35/5              |  |
| 10459            |                     | 0.2                 |                  | 100.0            |                  | 0.0213    | 2051                  | 1424                    | 1197         | 741       | 6736              | 4189              |  |
| 12283            |                     | 0.0                 |                  | 100.0            |                  | 0.0173    | 2408                  | 1673                    | 1406         | 870       | 7911              | 4919              |  |
| 14332            |                     | 0.0                 |                  | 100.0            |                  | 0.0148    | 2810                  | 1952                    | 1640         | 1015      | 9230              | 5740              |  |
| 16382            |                     | 0.0                 |                  | 100.0            |                  | 0.0129    | 3212<br>3624          | 2231                    | 18/5         | 1161      | 10551             | 0001<br>7401      |  |
| 20484            |                     | 0.0                 |                  | 100.0            |                  | 0.0113    | 4016                  | 2789                    | 2344         | 1451      | 13193             | 8204              |  |
| 23149            |                     | 0.0                 |                  | 100.0            |                  | 0.0092    | 4539                  | 3152                    | 2649         | 1640      | 14909             | 9271              |  |
| 25065            |                     | 0.0                 |                  | 100.0            |                  | 0.0085    | 4915                  | 3413                    | 2868         | 1776      | 16143             | 10038             |  |
| 2/136            |                     | 0.0                 |                  | 100.0            |                  | 0.0078    | 5321                  | 3695<br>4000            | 3105         | 1922      | 1/477             | 10868             |  |
| 31805            |                     | 0.0                 |                  | 100.0            |                  | 0.0072    | 6236                  | 4331                    | 3640         | 2081      | 20484             | 12737             |  |
| 34422            |                     | 0.0                 |                  | 100.0            |                  | 0.0062    | 6749                  | 4687                    | 3939         | 2439      | 22169             | 13786             |  |
| 37194            |                     | 0.0                 |                  | 100.0            |                  | 0.0057    | 7293                  | 5065                    | 4257         | 2635      | 23955             | 14896             |  |
| 40343            |                     | 0.0                 |                  | 100.0            |                  | 0.0053    | 7910                  | 5493                    | 4617         | 2858      | 25983             | 16157             |  |
| 45592<br>47293   |                     | 0.0                 |                  | 100.0            |                  | 0.0049    | 6547<br>9273          | 5936<br>6440            | 4989<br>5412 | 3088      | 28075<br>30459    | 1/458 18940       |  |
| 51171            |                     | 0.0                 |                  | 100.0            |                  | 0.0041    | 10034                 | 6968                    | 5856         | 3625      | 32956             | 20493             |  |
| 55384            |                     | 0.0                 |                  | 100.0            |                  | 0.0038    | 10860                 | 7541                    | 6338         | 3924      | 35670             | 22181             |  |
| 59879            |                     | 0.0                 |                  | 100.0            |                  | 0.0035    | 11741                 | 8153                    | 6853         | 4242      | 38565             | 23981             |  |



(B) Capillary Pressure Plot



(C) Pore Size Distribution plot



| Well<br>Sample | Depth       |                | B<br>9      | engword<br>14.9 m  | en South-6           |                 |                    |                |                 |              |                        |
|----------------|-------------|----------------|-------------|--------------------|----------------------|-----------------|--------------------|----------------|-----------------|--------------|------------------------|
| Client         | Geoscience  | AVictoria      |             | Density (          | Gradients (psi/foot) |                 | Con                | ersion Paramet | ers (dvnes/cm   | )            |                        |
| Well           | Bengworden  | South-6        |             | Density            | Typical              |                 | Con                | air/water      | air/oil         | oil/water    | CO <sub>2</sub> /water |
|                |             |                |             | Water:             | 0.440                | Laboratory The  | ta                 | 0.0            | 0.0             | 30.0         | 0.0                    |
| Test Method    | Air/Mercury | Capillary Pres | sure        | Oil:               | 0.330                | Laboratory IFT  |                    | 72.0           | 24.0            | 48.0         | 72.0                   |
| Sample         | BS6         |                |             | Gas.               | 0.100                | Reservoir IFT   |                    | 50.0           |                 | 30.0         | 26.0                   |
| Depth          | 914.90 m    |                |             | CO2 Density        | 0.237                | Laboratory Tco: | sTheta             | 72.0           | 24.0            | 42.0         | 72.0                   |
| · ·            |             |                |             |                    |                      | Reservoir Tcos  | Theta              | 50.0           |                 | 26.0         | 26.0                   |
| n              |             | 0.042          |             | <b>R</b> (         | Estimated Column     | Entry I         | Pressure (psia)    | Displacement   | Pressure (psia) | Threshold P  | ressure (psia)         |
| Pore radius (µ | ım)         | 0.043          |             | A-Hg               | na                   | 2477            | Res Con            | Lab<br>3115    | Resv            | 120<br>3248  | Kesv                   |
|                |             |                |             | G-W                | 993                  | 486             | 337                | 611            | 424             | 637          | 442                    |
|                |             |                |             | O-W                | 1595                 | 162             | 175                | 204            | 221             | 212          | 230                    |
|                |             |                |             | CO <sub>2</sub> -W | 531                  | 486             | 175                | 611            | 221             | 637          | 230                    |
|                |             |                |             |                    |                      | Equivalant      | Injustion Programs | Oil/Prine      | Oil/Prine       | Haight Abova | Haight Abour           |
|                | Rav         | / Data         | Conform     | ance Corrected     | Pore                 | Air/Brine       | Air/Brine          | Lab            | Reservoir       | Free Water   | Free Water             |
| Pressure       | Intrusion   | Saturation     | Intrusion   | Saturation         | Diameter             | Lab             | Res Con            | Conditions     | Conditions      | Oil-Water    | Gas-Water              |
| (psia)         | (percent)   | (percent)      | (percent)   | (percent)          | (µm)                 | (psi)           | (psi)              | (psi)          | (psi)           | (feet)       | (feet)                 |
| 1.00           | 0.0         | 0.0            | 0.0         | 0.0                | 211                  | 0.20            | 0.14               | 0.11           | 0.07            | 0.64         | 0.40                   |
| 1.00           | 0.0         | 0.0            | 0.0         | 0.0                | 211                  | 0.20            | 0.14               | 0.11           | 0.07            | 0.64         | 0.40                   |
| 2.73           | 0.3         | 0.8            | 0.0         | 0.0                | 77.6                 | 0.54            | 0.37               | 0.31           | 0.19            | 1.75         | 1.09                   |
| 3.18           | 0.1         | 1.0            | 0.0         | 0.0                | 66.7                 | 0.62            | 0.43               | 0.36           | 0.23            | 2.05         | 1.27                   |
| 3.73           | 0.1         | 1.1            | 0.0         | 0.0                | 56.9                 | 0.73            | 0.51               | 0.43           | 0.26            | 2.40         | 1.49                   |
| 4.38           | 0.1         | 1.2            | 0.0         | 0.0                | 48.4                 | 0.86            | 0.60               | 0.50           | 0.31            | 2.82         | 1.76                   |
| 5.18           | 0.1         | 1.5            | 0.0         | 0.0                | 35.5                 | 1.02            | 0.71               | 0.59           | 0.37            | 3.54         | 2.08                   |
| 6.97           | 0.1         | 1.5            | 0.0         | 0.0                | 30.4                 | 1.37            | 0.95               | 0.80           | 0.42            | 4.49         | 2.80                   |
| 8.27           | 0.1         | 1.6            | 0.0         | 0.0                | 25.6                 | 1.62            | 1.13               | 0.95           | 0.59            | 5.33         | 3.32                   |
| 9.97           | 0.1         | 1.7            | 0.0         | 0.0                | 21.3                 | 1.95            | 1.35               | 1.14           | 0.71            | 6.42         | 3.97                   |
| 11.5           | 0.1         | 1.8            | 0.0         | 0.0                | 18.5                 | 2.25            | 1.56               | 1.32           | 0.82            | 7.43         | 4.59                   |
| 15.5           | 0.1         | 2.0            | 0.0         | 0.0                | 13.7                 | 3.04            | 2.11               | 1.54           | 1.10            | 10.0         | 6.21                   |
| 18.5           | 0.1         | 2.2            | 0.0         | 0.0                | 11.5                 | 3.63            | 2.52               | 2.12           | 1.31            | 11.9         | 7.41                   |
| 21.6           | 0.1         | 2.3            | 0.0         | 0.0                | 9.83                 | 4.24            | 2.94               | 2.47           | 1.53            | 13.9         | 8.65                   |
| 25.3           | 0.5         | 2.8            | 0.0         | 0.0                | 8.39                 | 4.96            | 3.44               | 2.90           | 1.80            | 16.4         | 10.1                   |
| 30.0           | 0.2         | 3.0            | 0.0         | 0.0                | 7.08                 | 5.88            | 4.08               | 3.43           | 2.12            | 19.3         | 12.0                   |
| 47.2           | 0.0         | 3.0            | 0.0         | 0.0                | 4 49                 | 9 25            | 6.42               | 5 40           | 3 34            | 30.4         | 18.9                   |
| 56.6           | 0.0         | 3.0            | 0.0         | 0.0                | 3.75                 | 11.1            | 7.71               | 6.48           | 4.01            | 36.5         | 22.7                   |
| 66.3           | 0.0         | 3.1            | 0.0         | 0.0                | 3.20                 | 13.0            | 9.03               | 7.59           | 4.70            | 42.7         | 26.6                   |
| 80.4           | 0.1         | 3.2            | 0.0         | 0.0                | 2.64                 | 15.8            | 11.0               | 9.20           | 5.70            | 51.8         | 32.4                   |
| 93.0           | 0.1         | 3.5            | 0.0         | 0.0                | 2.28                 | 21.8            | 12.0               | 10.6           | 0.30<br>7.86    | 59.6<br>71.5 | 57.1<br>44.4           |
| 129            | 0.1         | 3.5            | 0.0         | 0.0                | 1.65                 | 25.3            | 17.6               | 14.8           | 9.16            | 83.3         | 51.8                   |
| 152            | 0.1         | 3.6            | 0.0         | 0.0                | 1.39                 | 29.8            | 20.7               | 17.4           | 10.8            | 98.2         | 60.9                   |
| 179            | 0.1         | 3.7            | 0.0         | 0.0                | 1.18                 | 35.1            | 24.4               | 20.5           | 12.7            | 115          | 71.8                   |
| 210            | 0.1         | 3.8            | 0.0         | 0.0                | 1.01                 | 41.2            | 28.6               | 24.0           | 14.9            | 135          | 84.1                   |
| 247            | 0.2         | 4.0            | 0.0         | 0.0                | 0.800                | 40.4<br>57 3    | 39.8               | 28.5           | 20.7            | 139          | 117                    |
| 343            | 0.2         | 4.3            | 0.0         | 0.0                | 0.619                | 67.3            | 46.7               | 39.3           | 24.3            | 221          | 137                    |
| 401            | 0.2         | 4.5            | 0.0         | 0.0                | 0.528                | 78.6            | 54.6               | 45.9           | 28.4            | 258          | 161                    |
| 472            | 0.2         | 4.7            | 0.0         | 0.0                | 0.449                | 92.5            | 64.2               | 54.0           | 33.4            | 304          | 189                    |
| 553<br>647     | 0.2         | 5.0            | 0.0         | 0.0                | 0.383                | 108             | /5.0               | 63.3<br>74.0   | 39.2<br>45.8    | 356<br>416   | 221                    |
| 757            | 0.3         | 5.5            | 0.0         | 0.0                | 0.280                | 148             | 103                | 86.6           | 53.6            | 487          | 303                    |
| 887            | 0.4         | 5.9            | 0.0         | 0.0                | 0.239                | 174             | 121                | 102            | 63.1            | 574          | 356                    |
| 1048           | 0.5         | 6.4            | 0.0         | 0.0                | 0.202                | 205             | 142                | 120            | 74.3            | 675          | 418                    |
| 1227           | 0.5         | 6.9<br>7.6     | 0.0         | 0.0                | 0.173                | 241             | 167                | 140            | 86.7            | 788          | 491<br>576             |
| 1688           | 0.9         | 8.5            | 0.0         | 0.0                | 0.126                | 331             | 230                | 193            | 119             | 1082         | 676                    |
| 1828           | 0.6         | 9.1            | 0.0         | 0.0                | 0.116                | 358             | 249                | 209            | 129             | 1173         | 732                    |
| 2142           | 1.6         | 10.7           | 1.7         | 1.7                | 0.0990               | 420             | 292                | 245            | 152             | 1382         | 859                    |
| 2510           | 2.6         | 13.3           | 2.8         | 4.5                | 0.0845               | 492             | 342                | 287            | 178             | 1618         | 1006                   |
| 2945<br>3449   | 4.5         | 30.9           | 4.8<br>14.7 | 24.0               | 0.0615               | 676             | 469                | 395            | 209             | 2227         | 1379                   |
| 4040           | 35.6        | 66.5           | 39.2        | 63.2               | 0.0525               | 792             | 550                | 462            | 286             | 2600         | 1618                   |
| 4728           | 33.1        | 99.6           | 36.4        | 99.6               | 0.0448               | 927             | 644                | 541            | 335             | 3045         | 1894                   |
| 5114           | 0.1         | 99.7           | 0.2         | 99.7               | 0.0415               | 1003            | 697                | 585            | 362             | 3291         | 2050                   |
| 6002<br>7033   | 0.2         | 99.9<br>100 0  | 0.2         | 99.9<br>100.0      | 0.0353               | 1177            | 817                | 687<br>805     | 425             | 3864<br>4527 | 2403                   |
| 7895           | 0.0         | 100.0          | 0.0         | 100.0              | 0.0269               | 1548            | 1075               | 904            | 560             | 5091         | 3162                   |
| 8920           | 0.0         | 100.0          | 0.0         | 100.0              | 0.0238               | 1749            | 1215               | 1021           | 632             | 5745         | 3574                   |
| 9649           | 0.0         | 100.0          | 0.0         | 100.0              | 0.0220               | 1892            | 1314               | 1104           | 683             | 6209         | 3865                   |
| 10452          | 0.0         | 100.0          | 0.0         | 100.0              | 0.0203               | 2049            | 1423               | 1196           | 740             | 6727         | 4185                   |
| 12283          | 0.0         | 100.0          | 0.0         | 100.0              | 0.01/3               | 2408            | 10/2               | 1406           | 870             | 7909<br>9227 | 4918                   |
| 16381          | 0.0         | 100.0          | 0.0         | 100.0              | 0.0148               | 3212            | 2231               | 1875           | 1161            | 10555        | 6562                   |
| 18481          | 0.0         | 100.0          | 0.0         | 100.0              | 0.0115               | 3624            | 2517               | 2115           | 1309            | 11900        | 7403                   |
| 20481          | 0.0         | 100.0          | 0.0         | 100.0              | 0.0104               | 4016            | 2789               | 2344           | 1451            | 13191        | 8203                   |
| 23149          | 0.0         | 100.0          | 0.0         | 100.0              | 0.0092               | 4539            | 3152               | 2649           | 1640            | 14909        | 9271                   |
| 25064          | 0.0         | 100.0          | 0.0         | 100.0              | 0.0085               | 4915            | 3695               | 2808           | 1//5            | 10130        | 10038                  |
| 29376          | 0.0         | 100.0          | 0.0         | 100.0              | 0.0072               | 5760            | 4000               | 3362           | 2081            | 18918        | 11765                  |
| 31804          | 0.0         | 100.0          | 0.0         | 100.0              | 0.0067               | 6236            | 4331               | 3640           | 2253            | 20482        | 12738                  |
| 34421          | 0.0         | 100.0          | 0.0         | 100.0              | 0.0062               | 6749            | 4687               | 3939           | 2438            | 22164        | 13785                  |
| 37192          | 0.0         | 100.0          | 0.0         | 100.0              | 0.0057               | 7293            | 5065               | 4256           | 2635            | 23955        | 14897                  |
| 40343<br>43501 | 0.0         | 100.0          | 0.0         | 100.0              | 0.0053               | 7910            | 5493               | 4617<br>4980   | 2858            | 25982        | 16156                  |
| 47291          | 0.0         | 100.0          | 0.0         | 100.0              | 0.0045               | 9273            | 6440               | 5412           | 3350            | 30455        | 18941                  |
| 51172          | 0.0         | 100.0          | 0.0         | 100.0              | 0.0041               | 10034           | 6968               | 5856           | 3625            | 32955        | 20494                  |
| 55387          | 0.0         | 100.0          | 0.0         | 100.0              | 0.0038               | 10860           | 7542               | 6339           | 3924            | 35673        | 22182                  |
| 59880          | 0.0         | 100.0          | 0.0         | 100.0              | 0.0035               | 11741           | 8153               | 6853           | 4242            | 38564        | 23979                  |

# Bengworden South-6







ACS LABORATORIES PTY. LTD.

| /ell<br>ample               | Depth                                      |                                          | B<br>5                            | undalagu<br>99.8 m                        | ah-10                                                            |                                                     |                                                      |                                                    |                                               |                                                   | LAE                                               |
|-----------------------------|--------------------------------------------|------------------------------------------|-----------------------------------|-------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| lient<br>/ell<br>est Method | Geoscience A<br>Bundalaguah<br>Air/Mercury | 4 Victoria<br>1-10<br>Capillary Pressure | ð                                 | Density G<br>Water:<br>Oil:<br>Gas:       | <b>radients (psi/foot)</b><br>Typical<br>0.440<br>0.330<br>0.100 | Laboratory The<br>Laboratory IFT<br>Reservoir Theta | Con                                                  | version Paramet<br>air/water<br>0.0<br>72.0<br>0.0 | ers (dynes/cm)<br>air/oil<br>0.0<br>24.0      | oil/water<br>30.0<br>48.0<br>30.0                 | CO <sub>2</sub> /water<br>0.0<br>72.0<br>0.0      |
| ample<br>epth               | B10<br>599.80 m                            |                                          |                                   | CO2 Density                               | 0.155                                                            | Reservoir IFT<br>Laboratory Tco<br>Reservoir Tcos   | sTheta                                               | 50.0<br>72.0<br>50.0                               | 24.0                                          | 30.0<br>42.0<br>26.0                              | 26.0<br>72.0<br>26.0                              |
| ore radius (µ               | .m)                                        | 1.33                                     |                                   | System<br>A-Hg<br>G-W                     | Estimated Column<br>Height (feet)<br>na<br>32                    | Entry I<br>Lab<br>79.9<br>15.7                      | Pressure (psia)<br>Res Con<br>-<br>10.9              | Displacement I<br>Lab<br>343<br>67.4               | Pressure (psia)<br>Resv<br>-<br>46.8          | Threshold P<br>Lab<br>467<br>91.7                 | ressure (psia)<br>Resv<br>-<br>63.7               |
|                             |                                            |                                          |                                   | CO <sub>2</sub> -W                        | 15                                                               | 15.7                                                | 5.66                                                 | 67.4                                               | 24.3                                          | 91.7                                              | 33.1                                              |
| Pressure<br>(psia)          | Raw<br>Intrusion<br>(percent)              | Data<br>Saturation<br>(percent)          | Conform<br>Intrusion<br>(percent) | ance Corrected<br>Saturation<br>(percent) | Pore<br>Diameter<br>(µm)                                         | Equivalent<br>Air/Brine<br>Lab<br>(psi)             | Injection Pressures<br>Air/Brine<br>Res Con<br>(psi) | Oil/Brine<br>Lab<br>Conditions<br>(psi)            | Oil/Brine<br>Reservoir<br>Conditions<br>(psi) | Height Above<br>Free Water<br>Oil-Water<br>(feet) | Height Above<br>Free Water<br>Gas-Water<br>(feet) |
| 1.00                        | 0.0                                        | 0.0                                      | 0.0                               | 0.0                                       | 211                                                              | 0.20                                                | 0.14                                                 | 0.11                                               | 0.07                                          | 0.64                                              | 0.40                                              |
| 2.73                        | 0.1                                        | 0.4                                      | 0.0                               | 0.0                                       | 77.6                                                             | 0.54                                                | 0.37                                                 | 0.25                                               | 0.14                                          | 1.28                                              | 1.09                                              |
| 3.18                        | 0.1                                        | 0.5                                      | 0.0                               | 0.0                                       | 66.7                                                             | 0.62                                                | 0.43                                                 | 0.36                                               | 0.23                                          | 2.05                                              | 1.27                                              |
| 4.38                        | 0.1                                        | 0.5                                      | 0.0                               | 0.0                                       | 48.4                                                             | 0.73                                                | 0.60                                                 | 0.43                                               | 0.26                                          | 2.40                                              | 1.49                                              |
| 5.18                        | 0.1                                        | 0.7                                      | 0.0                               | 0.0                                       | 41.0                                                             | 1.02                                                | 0.71                                                 | 0.59                                               | 0.37                                          | 3.34                                              | 2.08                                              |
| 5.98<br>6.97                | 0.1                                        | 0.8<br>0.8                               | 0.0<br>0.0                        | 0.0                                       | 35.5<br>30.4                                                     | 1.17                                                | 0.81                                                 | 0.68                                               | 0.42                                          | 3.85<br>4.49                                      | 2.39                                              |
| 8.27                        | 0.1                                        | 0.9                                      | 0.0                               | 0.0                                       | 25.6                                                             | 1.62                                                | 1.13                                                 | 0.95                                               | 0.59                                          | 5.33                                              | 3.32                                              |
| 9.97                        | 0.1                                        | 1.0                                      | 0.0                               | 0.0                                       | 21.3                                                             | 1.95                                                | 1.35                                                 | 1.14                                               | 0.71                                          | 6.42                                              | 3.97                                              |
| 11.5                        | 0.1                                        | 1.1                                      | 0.0                               | 0.0                                       | 15.7                                                             | 2.25                                                | 1.30                                                 | 1.52                                               | 0.82                                          | 8.66                                              | 4.39                                              |
| 15.5                        | 0.1                                        | 1.3                                      | 0.0                               | 0.0                                       | 13.7                                                             | 3.04                                                | 2.11                                                 | 1.77                                               | 1.10                                          | 10.0                                              | 6.21                                              |
| 18.5<br>21.6                | 0.1                                        | 1.4                                      | 0.0<br>0.0                        | 0.0<br>0.0                                | 11.5<br>9.83                                                     | 3.63<br>4.24                                        | 2.52<br>2.94                                         | 2.12<br>2.47                                       | 1.31                                          | 11.9<br>13.9                                      | 7.41                                              |
| 25.3                        | 0.1                                        | 1.6                                      | 0.0                               | 0.0                                       | 8.39                                                             | 4.96                                                | 3.44                                                 | 2.90                                               | 1.80                                          | 16.4                                              | 10.1                                              |
| 30.0                        | 0.2                                        | 1.8                                      | 0.0                               | 0.0                                       | 7.08                                                             | 5.88                                                | 4.08                                                 | 3.43                                               | 2.12                                          | 19.3                                              | 12.0                                              |
| 47.2                        | 0.1                                        | 2.0                                      | 0.0                               | 0.0                                       | 4.49                                                             | 9.25                                                | 6.42                                                 | 4.20                                               | 3.34                                          | 30.4                                              | 14.9                                              |
| 56.6                        | 0.2                                        | 2.2                                      | 0.0                               | 0.0                                       | 3.75                                                             | 11.1                                                | 7.71                                                 | 6.48                                               | 4.01                                          | 36.5                                              | 22.7                                              |
| 66.3<br>80.4                | 0.2                                        | 2.4                                      | 0.0                               | 0.0                                       | 3.20<br>2.64                                                     | 13.0                                                | 9.03                                                 | 7.59<br>9.20                                       | 4.70                                          | 42.7                                              | 26.6                                              |
| 93.0                        | 0.6                                        | 3.4                                      | 0.0                               | 0.0                                       | 2.28                                                             | 18.2                                                | 12.6                                                 | 10.6                                               | 6.56                                          | 59.6                                              | 37.1                                              |
| 111                         | 0.6                                        | 3.9                                      | 0.6                               | 0.6                                       | 1.91                                                             | 21.8                                                | 15.1                                                 | 12.7                                               | 7.86                                          | 71.5                                              | 44.4                                              |
| 152                         | 1.1                                        | 5.7                                      | 1.1                               | 2.5                                       | 1.39                                                             | 29.8                                                | 20.7                                                 | 17.4                                               | 10.8                                          | 98.2                                              | 60.9                                              |
| 179                         | 1.4                                        | 7.1                                      | 1.4                               | 3.9                                       | 1.18                                                             | 35.1                                                | 24.4                                                 | 20.5                                               | 12.7                                          | 115                                               | 71.8                                              |
| 210 247                     | 1.4                                        | 8.5<br>10.2                              | 1.4                               | 5.3<br>7.1                                | 0.860                                                            | 41.2<br>48.4                                        | 28.6<br>33.6                                         | 24.0 28.3                                          | 14.9                                          | 135                                               | 84.1<br>98.8                                      |
| 292                         | 2.0                                        | 12.2                                     | 2.0                               | 9.1                                       | 0.726                                                            | 57.3                                                | 39.8                                                 | 33.4                                               | 20.7                                          | 188                                               | 117                                               |
| 343<br>401                  | 2.1 2.3                                    | 14.3<br>16.6                             | 2.2                               | 11.3                                      | 0.619                                                            | 67.3<br>78.6                                        | 46.7<br>54.6                                         | 39.3<br>45.9                                       | 24.3<br>28.4                                  | 221                                               | 137                                               |
| 472                         | 2.5                                        | 19.2                                     | 2.6                               | 16.3                                      | 0.449                                                            | 92.5                                                | 64.2                                                 | 54.0                                               | 33.4                                          | 304                                               | 189                                               |
| 553<br>647                  | 2.8                                        | 22.0<br>24.6                             | 2.9<br>2.7                        | 19.3<br>22.0                              | 0.383                                                            | 108<br>127                                          | 75.0<br>88.2                                         | 63.3<br>74.0                                       | 39.2<br>45.8                                  | 356<br>416                                        | 221<br>259                                        |
| 757                         | 3.0                                        | 27.6                                     | 3.1                               | 25.1                                      | 0.280                                                            | 148                                                 | 103                                                  | 86.6                                               | 53.6                                          | 487                                               | 303                                               |
| 887                         | 3.3                                        | 30.9                                     | 3.4                               | 28.5                                      | 0.239                                                            | 174                                                 | 121                                                  | 102                                                | 63.1                                          | 574                                               | 356                                               |
| 1048                        | 5.0<br>4.0                                 | 34.5<br>38.6                             | 5.8<br>4.2                        | 32.3<br>36.4                              | 0.202                                                            | 205                                                 | 142                                                  | 120                                                | /4.3<br>86.7                                  | 0/5<br>788                                        | 418                                               |
| 1439                        | 4.5                                        | 43.0                                     | 4.6                               | 41.0                                      | 0.147                                                            | 282                                                 | 196                                                  | 165                                                | 102                                           | 927                                               | 576                                               |
| 1688                        | 5.2<br>2.9                                 | 48.2<br>51.1                             | 5.4<br>3.0                        | 46.4<br>49.4                              | 0.126 0.116                                                      | 331<br>358                                          | 230<br>249                                           | 193<br>209                                         | 119                                           | 1082                                              | 676<br>732                                        |
| 2142                        | 6.0                                        | 57.2                                     | 6.3                               | 55.7                                      | 0.0990                                                           | 420                                                 | 292                                                  | 245                                                | 152                                           | 1382                                              | 859                                               |
| 2510<br>2945                | 6.8<br>7.0                                 | 64.0<br>71.0                             | 7.0                               | 62.7<br>70.0                              | 0.0845                                                           | 492<br>577                                          | 342<br>401                                           | 287<br>337                                         | 178<br>209                                    | 1618<br>1900                                      | 1006<br>1179                                      |
| 3449                        | 6.6                                        | 77.6                                     | 6.8                               | 76.8                                      | 0.0615                                                           | 676                                                 | 469                                                  | 395                                                | 245                                           | 2227                                              | 1379                                              |
| 4040<br>4728                | 5.8                                        | 83.3<br>89.6                             | 6.0<br>6.4                        | 82.8                                      | 0.0525                                                           | 792<br>927                                          | 550<br>644                                           | 462                                                | 286                                           | 2600                                              | 1618                                              |
| 5114                        | 1.7                                        | 91.3                                     | 1.8                               | 91.0                                      | 0.0415                                                           | 1003                                                | 697                                                  | 585                                                | 362                                           | 3291                                              | 2050                                              |
| 6002                        | 3.2                                        | 94.5                                     | 3.3                               | 94.3                                      | 0.0353                                                           | 1177                                                | 817                                                  | 687                                                | 425                                           | 3864                                              | 2403                                              |
| 7895                        | 2.0                                        | 98.6                                     | 1.5                               | 97.0                                      | 0.0269                                                           | 1548                                                | 1075                                                 | 805<br>904                                         | 498<br>560                                    | 4327<br>5091                                      | 3162                                              |
| 8920                        | 0.9                                        | 99.4                                     | 0.9                               | 99.4                                      | 0.0238                                                           | 1749                                                | 1215                                                 | 1021                                               | 632                                           | 5745                                              | 3574                                              |
| 9649<br>10452               | 0.3                                        | 99.7<br>99.9                             | 0.3                               | 99.7<br>99.9                              | 0.0220                                                           | 2049                                                | 1314<br>1423                                         | 1104                                               | 683<br>740                                    | 6209<br>6727                                      | 3865<br>4185                                      |
| 12283                       | 0.1                                        | 100.0                                    | 0.1                               | 100.0                                     | 0.0173                                                           | 2408                                                | 1672                                                 | 1406                                               | 870                                           | 7909                                              | 4918                                              |
| 14333<br>16381              | 0.0<br>0.0                                 | 100.0<br>100.0                           | 0.0<br>0.0                        | 100.0<br>100.0                            | 0.0148 0.0129                                                    | 2810<br>3212                                        | 1951<br>2231                                         | 1640<br>1875                                       | 1015<br>1161                                  | 9227<br>10555                                     | 5738<br>6562                                      |
| 18481                       | 0.0                                        | 100.0                                    | 0.0                               | 100.0                                     | 0.0115                                                           | 3624                                                | 2517                                                 | 2115                                               | 1309                                          | 11900                                             | 7403                                              |
| 20481                       | 0.0                                        | 100.0                                    | 0.0                               | 100.0                                     | 0.0104                                                           | 4016<br>4530                                        | 2789                                                 | 2344                                               | 1451                                          | 13191                                             | 8203                                              |
| 25064                       | 0.0                                        | 100.0                                    | 0.0                               | 100.0                                     | 0.0085                                                           | 4915                                                | 3413                                                 | 2868                                               | 1775                                          | 16136                                             | 10038                                             |
| 27135                       | 0.0                                        | 100.0                                    | 0.0                               | 100.0                                     | 0.0078                                                           | 5321                                                | 3695                                                 | 3105                                               | 1922                                          | 17473                                             | 10868                                             |
| 29376<br>31804              | 0.0                                        | 100.0                                    | 0.0<br>0.0                        | 100.0                                     | 0.0072 0.0067                                                    | 5760<br>6236                                        | 4000<br>4331                                         | 3362<br>3640                                       | 2081 2253                                     | 18918<br>20482                                    | 11765                                             |
| 34421                       | 0.0                                        | 100.0                                    | 0.0                               | 100.0                                     | 0.0062                                                           | 6749                                                | 4687                                                 | 3939                                               | 2438                                          | 22164                                             | 13785                                             |
| 37192                       | 0.0                                        | 100.0                                    | 0.0                               | 100.0                                     | 0.0057                                                           | 7293                                                | 5065                                                 | 4256                                               | 2635                                          | 23955                                             | 14897                                             |
| 43591                       | 0.0                                        | 100.0                                    | 0.0                               | 100.0                                     | 0.0055                                                           | 8547                                                | 5935                                                 | 4989                                               | 2038                                          | 23982<br>28073                                    | 17456                                             |
| 47291                       | 0.0                                        | 100.0                                    | 0.0                               | 100.0                                     | 0.0045                                                           | 9273                                                | 6440                                                 | 5412                                               | 3350                                          | 30455                                             | 18941                                             |
| 51172<br>55387              | 0.0                                        | 100.0                                    | 0.0                               | 100.0                                     | 0.0041                                                           | 10034                                               | 6968<br>7542                                         | 5856<br>6339                                       | 3625<br>3924                                  | 32955<br>35673                                    | 20494<br>22182                                    |
| 59880                       | 0.0                                        | 100.0                                    | 0.0                               | 100.0                                     | 0.0035                                                           | 11741                                               | 8153                                                 | 6853                                               | 4242                                          | 38564                                             | 23979                                             |









# WellCSample Depth1



Cod-1 1771.89 m

| Client<br>Well   | Geoscience Victoria               |                 |               | -                |                        | Conversio  | n Parameters<br>air/water | air/oil           | oil/water         |
|------------------|-----------------------------------|-----------------|---------------|------------------|------------------------|------------|---------------------------|-------------------|-------------------|
| wen              | 0001                              |                 |               | Laboratory Theta |                        |            | 0.0                       | 0.0               | 30.0              |
| Test Method      | Air/Mercury Capillary Pressure Dr | ainage          |               | Laboratory IFT   |                        |            | 72.0                      | 24.0              | 48.0              |
| 6                | Cod 1                             | A mikima A Demo | - L 114-      | Reservoir Theta  |                        |            | 0.0                       |                   | 30.0              |
| Depth            | 1711.89 m                         | Ambient Perme   | abinty<br>tv  | Laboratory TcosT | Theta                  |            | 72.0                      | 24.0              | 42.0              |
|                  | -                                 |                 |               | Reservoir TcosTh | neta                   |            | 50.0                      |                   | 26.0              |
| pore radius (µm) |                                   | D: 1 (D ( ))    | 71 1 110 ( `) | D                | ensity Gradients, psi/ | foot       | 4                         |                   |                   |
| 0.030<br>System  | Lab Resv                          | Lab Resv        | Lab Resv      | Water            |                        | 0 440      | ł                         |                   |                   |
| A-Hg             | 3547.7 -                          | 5070 -          | 5787 -        | Oil:             |                        | 0.330      |                           |                   |                   |
| G-W              | 696.0 483.3                       | 994.7 690.7     | 1135.3 788.4  | Gas:             |                        | 0.100      | 1                         |                   |                   |
| 0-W              | 232.0 251.3                       | 331.6 359.2     | 3/8.4 410.0   |                  |                        |            |                           |                   |                   |
|                  |                                   |                 | Dora          | Equivalant       | Injustion Processor    |            |                           | Haight Abova Fraa | Haight Abova Fraa |
| Pressure         | Intrusion                         | Saturation      | Diameter      | A/B Lab          | A/B Res                | O/B Lab    | O/B Res                   | Water (feet)      | Water (feet)      |
| (psia)           | (percent)                         | (percent)       | (µm)          |                  |                        |            |                           | Oil-Water         | Gas-Water         |
|                  |                                   |                 |               |                  |                        |            |                           |                   |                   |
| 1.00             | 0.0                               | 0.0             | 213           | 0.20             | 0.14                   | 0.11       | 0.07                      | 0.64              | 0.40              |
| 1.00             | 0.0                               | 0.0             | 213           | 0.20             | 0.14                   | 0.11       | 0.07                      | 0.64              | 0.40              |
| 2 73             | 0.0                               | 0.0             | 107           | 0.39             | 0.27                   | 0.23       | 0.14                      | 1.28              | 0.79              |
| 3.18             | 0.0                               | 0.0             | 66.7          | 0.62             | 0.43                   | 0.36       | 0.23                      | 2.05              | 1.27              |
| 3.73             | 0.0                               | 0.0             | 56.9          | 0.73             | 0.51                   | 0.43       | 0.26                      | 2.40              | 1.49              |
| 4.38             | 0.0                               | 0.0             | 48.4          | 0.86             | 0.60                   | 0.50       | 0.31                      | 2.82              | 1.75              |
| 5.98             | 0.0                               | 0.0             | 35.5          | 1.2              | 0.81                   | 0.68       | 0.42                      | 3.85              | 2.39              |
| 6.97             | 0.0                               | 0.0             | 30.4          | 1.4              | 0.95                   | 0.80       | 0.49                      | 4.49              | 2.79              |
| 8.27             | 0.0                               | 0.0             | 25.6          | 1.6              | 1.1                    | 0.95       | 0.59                      | 5.33              | 3.31              |
| 11.5             | 0.0                               | 0.0             | 18.5          | 2.0              | 1.4                    | 1.3        | 0.81                      | 7.41              | 4.61              |
| 13.5             | 0.0                               | 0.0             | 15.7          | 2.6              | 1.8                    | 1.5        | 0.96                      | 8.69              | 5.41              |
| 15.5             | 0.0                               | 0.0             | 13.7          | 3.0              | 2.1                    | 1.8        | 1.1                       | 9.98              | 6.21              |
| 21.6             | 0.0                               | 0.0             | 9.83          | 4.2              | 2.5                    | 2.1        | 1.5                       | 13.91             | 8.65              |
| 25.3             | 0.0                               | 0.0             | 8.39          | 5.0              | 3.4                    | 2.9        | 1.8                       | 16.29             | 10.13             |
| 30.0             | 0.0                               | 0.0             | 7.08          | 5.9              | 4.1                    | 3.4        | 2.1                       | 19.32             | 12.01             |
| 48.3             | 0.0                               | 0.0             | 5.33          | 7.8<br>9.5       | 5.4                    | 4.5        | 2.8                       | 25.57             | 15.90             |
| 58.7             | 0.0                               | 0.0             | 3.61          | 12               | 8.0                    | 6.7        | 4.2                       | 37.81             | 23.51             |
| 68.6             | 0.0                               | 0.0             | 3.09          | 13               | 9.3                    | 7.9        | 4.9                       | 44.18             | 27.47             |
| 79.6<br>92.3     | 0.0                               | 0.0             | 2.66          | 16               | 11                     | 9.1        | 5.6                       | 51.27             | 31.88             |
| 112              | 0.0                               | 0.0             | 1.90          | 22               | 15                     | 13         | 7.9                       | 72.13             | 44.85             |
| 130              | 0.0                               | 0.0             | 1.64          | 25               | 18                     | 15         | 9.2                       | 83.73             | 52.06             |
| 152              | 0.0                               | 0.0             | 1.40          | 30               | 21                     | 21         | 11                        | 97.89             | 60.87<br>72.49    |
| 211              | 0.0                               | 0.0             | 1.00          | 41               | 29                     | 24         | 15                        | 135.9             | 84.50             |
| 247              | 0.0                               | 0.0             | 0.859         | 48               | 34                     | 28         | 17                        | 159.1             | 98.92             |
| 290              | 0.0                               | 0.0             | 0.731         | 57               | 39<br>47               | 33         | 21                        | 186.8             | 116.1             |
| 402              | 0.0                               | 0.0             | 0.527         | 79               | 55                     | 46         | 28                        | 258.9             | 161.0             |
| 473              | 0.0                               | 0.0             | 0.448         | 93               | 64                     | 54         | 34                        | 304.6             | 189.4             |
| 554<br>647       | 0.0                               | 0.0             | 0.383         | 109              | 75                     | 63<br>74   | 39                        | 356.8             | 221.9             |
| 757              | 0.0                               | 0.0             | 0.280         | 148              | 103                    | 87         | 54                        | 487.5             | 303.2             |
| 889              | 0.0                               | 0.0             | 0.239         | 174              | 121                    | 102        | 63                        | 572.6             | 356.0             |
| 1228             | 0.0                               | 0.0             | 0.202         | 203              | 143                    | 120        | 87                        | 790.9             | 491.8             |
| 1436             | 0.0                               | 0.0             | 0.148         | 282              | 196                    | 164        | 102                       | 924.8             | 575.1             |
| 1687             | 0.0                               | 0.0             | 0.126         | 331              | 230                    | 193        | 120                       | 1086              | 675.6             |
| 2143             | 0.0                               | 0.0             | 0.0989        | 420              | 292                    | 245        | 152                       | 1380              | 858.2             |
| 2507             | 0.0                               | 0.0             | 0.0846        | 492              | 341                    | 287        | 178                       | 1615              | 1004              |
| 2944             | 0.0                               | 0.0             | 0.0720        | 577              | 401                    | 337        | 209                       | 1896              | 1179              |
| 4040             | 0.9                               | 0.9             | 0.0525        | 792              | 550                    | 462        | 286                       | 2602              | 1618              |
| 4735             | 2.1                               | 3.0             | 0.0448        | 928              | 645                    | 542        | 335                       | 3050              | 1896              |
| 5120             | 3.2                               | 4.5             | 0.0414        | 1004             | 697<br>818             | 586<br>687 | 363<br>426                | 3297              | 2050              |
| 7035             | 12.1                              | 22.2            | 0.0301        | 1379             | 958                    | 805        | 498                       | 4531              | 2817              |
| 7898             | 14.1                              | 36.3            | 0.0268        | 1549             | 1075                   | 904        | 560                       | 5087              | 3163              |
| 8929             | 10.9                              | 47.3            | 0.0237        | 1751             | 1216                   | 1022       | 633                       | 5751              | 3576              |
| 10461            | 5.0                               | 58.4            | 0.0203        | 2051             | 1424                   | 1197       | 741                       | 6737              | 4189              |
| 12285            | 7.8                               | 66.2            | 0.0173        | 2409             | 1673                   | 1406       | 870                       | 7912              | 4920              |
| 14333            | 8.3                               | 74.5            | 0.0148        | 2810             | 1952                   | 1640       | 1015                      | 9231              | 5740              |
| 18481            | 4.7                               | 85.6            | 0.0129        | 3624             | 2516                   | 2115       | 1309                      | 11903             | 7401              |
| 20484            | 2.8                               | 88.5            | 0.0103        | 4016             | 2789                   | 2344       | 1451                      | 13193             | 8204              |
| 23149            | 2.6                               | 91.1            | 0.0092        | 4539             | 3152                   | 2649       | 1640                      | 14909             | 9271              |
| 27136            | 1.5                               | 92.5            | 0.0085        | 5321             | 3695                   | 3105       | 1922                      | 17477             | 10868             |
| 29378            | 1.2                               | 95.1            | 0.0072        | 5760             | 4000                   | 3362       | 2081                      | 18921             | 11766             |
| 31805            | 1.1                               | 96.2            | 0.0067        | 6236             | 4331                   | 3640       | 2253                      | 20484             | 12737             |
| 37194            | 0.8                               | 98.0            | 0.0057        | 7293             | 5065                   | 4257       | 2635                      | 23955             | 14896             |
| 40343            | 0.7                               | 98.8            | 0.0053        | 7910             | 5493                   | 4617       | 2858                      | 25983             | 16157             |
| 43592            | 0.5                               | 99.3<br>00 ¢    | 0.0049        | 8547             | 5936                   | 4989       | 3088                      | 28075             | 17458             |
| 51171            | 0.4                               | 99.8<br>99.8    | 0.0043        | 10034            | 6968                   | 5856       | 3625                      | 32956             | 20493             |
| 55385            | 0.1                               | 99.9            | 0.0038        | 10860            | 7542                   | 6338       | 3924                      | 35670             | 22181             |
| 59879            | 0.1                               | 100.0           | 0.0035        | 11741            | 8153                   | 6853       | 4242                      | 38565             | 23981             |



(B) Capillary Pressure Plot



(C) Pore Size Distribution plot



| Well<br>Sample | Depth        |                  |            | Colqu<br>180.7     | houn East-6<br>' m   |                 |                     |                 |                 |              | LAE                    |
|----------------|--------------|------------------|------------|--------------------|----------------------|-----------------|---------------------|-----------------|-----------------|--------------|------------------------|
| Client         | Geoscience A | A Victoria       |            | Density C          | Gradients (psi/foot) | r               | Conv                | version Paramet | ers (dynes/cm)  | 1            |                        |
| Well           | Colquhoun E  | East-6           |            |                    | Typical              |                 |                     | air/water       | air/oil         | oil/water    | CO <sub>2</sub> /water |
|                |              |                  |            | Water:             | 0.440                | Laboratory Thet | a                   | 0.0             | 0.0             | 30.0         | 0.0                    |
| Test Method    | Air/Mercury  | Capillary Pressu | ıre        | Oil:<br>Gas:       | 0.330                | Laboratory IFT  |                     | 72.0            | 24.0            | 48.0         | 72.0                   |
| Sample         | CE6          |                  |            | 0.03.              | 0.100                | Reservoir IFT   |                     | 50.0            |                 | 30.0         | 26.0                   |
| Depth          | 180.70 m     |                  |            | CO2 Density        | 0.035                | Laboratory Tcos | Theta               | 72.0            | 24.0            | 42.0         | 72.0                   |
| -              |              |                  |            | -                  |                      | Reservoir Tcos  | Theta               | 50.0            |                 | 26.0         | 26.0                   |
| в P (          |              | 0.105            |            | Contant            | Estimated Column     | Entry F         | ressure (psia)      | Displacement I  | Pressure (psia) | Threshold P  | ressure (psia)         |
| Pore radius (p | um)          | 0.105            |            | A-Hg               | na na                | 1011            | Kes Con             | 1185            | Resv            | 1389         | Resv                   |
|                |              |                  |            | G-W                | 405                  | 198             | 138                 | 232             | 161             | 272          | 189                    |
|                |              |                  |            | O-W                | 651                  | 66.1            | 71.6                | 77.5            | 83.9            | 90.8         | 98.4                   |
|                |              |                  |            | CO <sub>2</sub> -W | 171                  | 198             | 71.6                | 232             | 83.9            | 272          | 98.4                   |
|                |              |                  |            |                    |                      | Equivalent      | Injection Pressures | Oil/Brine       | Oil/Brine       | Height Above | Height Above           |
|                | Raw          | / Data           | Conforma   | nce Corrected      | Pore                 | Air/Brine       | Air/Brine           | Lab             | Reservoir       | Free Water   | Free Water             |
| Pressure       | Intrusion    | Saturation       | Intrusion  | Saturation         | Diameter             | Lab             | Res Con             | Conditions      | Conditions      | Oil-Water    | Gas-Water              |
| (psia)         | (percent)    | (percent)        | (percent)  | (percent)          | (µm)                 | (psi)           | (ps1)               | (psi)           | (ps1)           | (feet)       | (feet)                 |
|                |              |                  |            |                    |                      |                 |                     |                 |                 |              |                        |
| 1.00           | 0.0          | 0.0              | 0.0        | 0.0                | 211                  | 0.20            | 0.14                | 0.11            | 0.07            | 0.64         | 0.40                   |
| 1.98           | 0.7          | 0.7              | 0.0        | 0.0                | 107                  | 0.39            | 0.27                | 0.23            | 0.14            | 1.28         | 0.79                   |
| 3.18           | 0.5          | 1.1              | 0.0        | 0.0                | 66.7                 | 0.62            | 0.43                | 0.36            | 0.23            | 2.05         | 1.09                   |
| 3.73           | 0.1          | 1.3              | 0.0        | 0.0                | 56.9                 | 0.73            | 0.51                | 0.43            | 0.26            | 2.40         | 1.49                   |
| 4.38           | 0.2          | 1.5              | 0.0        | 0.0                | 48.4                 | 0.86            | 0.60                | 0.50            | 0.31            | 2.82         | 1.76                   |
| 5.18           | 0.1          | 1.5              | 0.0        | 0.0                | 41.0                 | 1.02            | 0.71                | 0.59            | 0.37            | 3.34         | 2.08                   |
| 5.98           | 0.2          | 1.7              | 0.0        | 0.0                | 35.5<br>30.4         | 1.17            | 0.81                | 0.68            | 0.42            | 3.85<br>4.49 | 2.39                   |
| 8.27           | 0.1          | 1.8              | 0.0        | 0.0                | 25.6                 | 1.57            | 1.13                | 0.80            | 0.49            | 5.33         | 3.32                   |
| 9.97           | 0.2          | 2.0              | 0.0        | 0.0                | 21.3                 | 1.95            | 1.35                | 1.14            | 0.71            | 6.42         | 3.97                   |
| 11.5           | 0.1          | 2.1              | 0.0        | 0.0                | 18.5                 | 2.25            | 1.56                | 1.32            | 0.82            | 7.43         | 4.59                   |
| 13.5           | 0.2          | 2.3              | 0.0        | 0.0                | 15.7                 | 2.65            | 1.84                | 1.54            | 0.95            | 8.66         | 5.41                   |
| 15.5           | 0.1          | 2.3              | 0.0        | 0.0                | 13.7                 | 3.04            | 2.11                | 1.//            | 1.10            | 10.0         | 6.21<br>7.41           |
| 21.6           | 0.0          | 2.4              | 0.0        | 0.0                | 9.83                 | 4.24            | 2.94                | 2.47            | 1.53            | 13.9         | 8.65                   |
| 25.3           | 0.3          | 2.7              | 0.0        | 0.0                | 8.39                 | 4.96            | 3.44                | 2.90            | 1.80            | 16.4         | 10.1                   |
| 30.0           | 0.1          | 2.8              | 0.0        | 0.0                | 7.08                 | 5.88            | 4.08                | 3.43            | 2.12            | 19.3         | 12.0                   |
| 37.2           | 0.1          | 2.9              | 0.0        | 0.0                | 5.70                 | 7.29            | 5.06                | 4.26            | 2.64            | 24.0         | 14.9                   |
| 47.2           | 0.1          | 2.9              | 0.0        | 0.0                | 4.49                 | 9.25            | 6.42                | 5.40<br>6.48    | 3.34<br>4.01    | 30.4<br>36.5 | 18.9                   |
| 66.3           | 0.0          | 3.1              | 0.0        | 0.0                | 3.20                 | 13.0            | 9.03                | 7.59            | 4.70            | 42.7         | 26.6                   |
| 80.4           | 0.1          | 3.2              | 0.0        | 0.0                | 2.64                 | 15.8            | 11.0                | 9.20            | 5.70            | 51.8         | 32.4                   |
| 93.0           | 0.1          | 3.3              | 0.0        | 0.0                | 2.28                 | 18.2            | 12.6                | 10.6            | 6.56            | 59.6         | 37.1                   |
| 111            | 0.2          | 3.5              | 0.2        | 0.2                | 1.91                 | 21.8            | 15.1                | 12.7            | 7.86            | 71.5         | 44.4                   |
| 129            | 0.1          | 3.7              | 0.1        | 0.3                | 1.65                 | 25.3            | 17.6                | 14.8            | 9.16            | 83.3         | 51.8                   |
| 179            | 0.2          | 4.0              | 0.2        | 0.7                | 1.18                 | 35.1            | 24.4                | 20.5            | 10.0            | 115          | 71.8                   |
| 210            | 0.2          | 4.3              | 0.2        | 1.0                | 1.01                 | 41.2            | 28.6                | 24.0            | 14.9            | 135          | 84.1                   |
| 247            | 0.2          | 4.5              | 0.2        | 1.2                | 0.860                | 48.4            | 33.6                | 28.3            | 17.5            | 159          | 98.8                   |
| 292            | 0.4          | 4.8              | 0.4        | 1.5                | 0.726                | 57.3            | 39.8                | 33.4            | 20.7            | 188          | 117                    |
| 401            | 0.3          | 5.3              | 0.3        | 2.1                | 0.528                | 78.6            | 54.6                | 45.9            | 24.5            | 258          | 161                    |
| 472            | 0.3          | 5.6              | 0.3        | 2.4                | 0.449                | 92.5            | 64.2                | 54.0            | 33.4            | 304          | 189                    |
| 553            | 0.4          | 6.1              | 0.5        | 2.8                | 0.383                | 108             | 75.0                | 63.3            | 39.2            | 356          | 221                    |
| 647            | 0.5          | 6.5              | 0.5        | 3.3                | 0.328                | 127             | 88.2                | 74.0            | 45.8            | 416          | 259                    |
| 887            | 0.7          | 7.5              | 0.8        | 4.1                | 0.280                | 148             | 103                 | 102             | 55.0<br>63.1    | 487          | 303                    |
| 1048           | 1.4          | 9.7              | 1.5        | 6.6                | 0.202                | 205             | 142                 | 120             | 74.3            | 675          | 418                    |
| 1227           | 2.6          | 12.3             | 2.6        | 9.2                | 0.173                | 241             | 167                 | 140             | 86.7            | 788          | 491                    |
| 1439           | 4.2          | 16.4             | 4.3        | 13.5               | 0.147                | 282             | 196                 | 165             | 102             | 927          | 576                    |
| 1828           | 0.8<br>5.8   | 23.2             | 6.0        | 20.6               | 0.126                | 358             | 230                 | 209             | 119             | 1082         | 732                    |
| 2142           | 9.6          | 38.6             | 10.0       | 36.5               | 0.0990               | 420             | 292                 | 245             | 152             | 1382         | 859                    |
| 2510           | 11.8         | 50.5             | 12.3       | 48.8               | 0.0845               | 492             | 342                 | 287             | 178             | 1618         | 1006                   |
| 2945           | 10.7         | 61.2             | 11.1       | 59.9               | 0.0720               | 577             | 401                 | 337             | 209             | 1900         | 1179                   |
| 5449<br>4040   | 8.1<br>5 Q   | 09.3<br>75.2     | 8.3<br>6.1 | 68.2<br>74.3       | 0.0615               | 0/6<br>792      | 469                 | 595<br>462      | 245<br>286      | 2227         | 13/9                   |
| 4728           | 6.2          | 81.4             | 6.5        | 80.8               | 0.0448               | 927             | 644                 | 541             | 335             | 3045         | 1894                   |
| 5114           | 2.0          | 83.4             | 2.1        | 82.9               | 0.0415               | 1003            | 697                 | 585             | 362             | 3291         | 2050                   |
| 6002           | 3.4          | 86.8             | 3.5        | 86.4               | 0.0353               | 1177            | 817                 | 687             | 425             | 3864         | 2403                   |
| 7033           | 3.0          | 89.8             | 3.1        | 89.5               | 0.0301               | 1379            | 958                 | 805             | 498             | 4527         | 2818                   |
| 8920           | 1.7          | 93.2             | 1.8        | 93.0               | 0.0238               | 1548            | 1215                | 1021            | 632             | 5745         | 3574                   |
| 9649           | 1.0          | 94.1             | 1.0        | 93.9               | 0.0220               | 1892            | 1314                | 1104            | 683             | 6209         | 3865                   |
| 10452          | 0.8          | 95.0             | 0.8        | 94.8               | 0.0203               | 2049            | 1423                | 1196            | 740             | 6727         | 4185                   |
| 12283          | 1.3          | 96.3             | 1.4        | 96.2               | 0.0173               | 2408            | 1672                | 1406            | 870             | 7909         | 4918                   |
| 14333          | 1.2          | 97.5             | 1.2        | 97.4<br>98.2       | 0.0148               | 2810            | 1951                | 1640<br>1875    | 1015            | 9227         | 5/38<br>6562           |
| 18481          | 0.6          | 98.9             | 0.6        | 98.8               | 0.0115               | 3624            | 2517                | 2115            | 1309            | 11900        | 7403                   |
| 20481          | 0.4          | 99.3             | 0.4        | 99.3               | 0.0104               | 4016            | 2789                | 2344            | 1451            | 13191        | 8203                   |
| 23149          | 0.3          | 99.6             | 0.4        | 99.6               | 0.0092               | 4539            | 3152                | 2649            | 1640            | 14909        | 9271                   |
| 25064          | 0.2          | 99.8             | 0.2        | 99.8               | 0.0085               | 4915            | 3413                | 2868            | 1775            | 16136        | 10038                  |
| 27135          | 0.1          | 99.9<br>100.0    | 0.1        | 99.9<br>100.0      | 0.0078               | 5321<br>5760    | 3695                | 3362            | 1922 2081       | 1/4/3        | 10868                  |
| 31804          | 0.0          | 100.0            | 0.0        | 100.0              | 0.0067               | 6236            | 4331                | 3640            | 2253            | 20482        | 12738                  |
| 34421          | 0.0          | 100.0            | 0.0        | 100.0              | 0.0062               | 6749            | 4687                | 3939            | 2438            | 22164        | 13785                  |
| 37192          | 0.0          | 100.0            | 0.0        | 100.0              | 0.0057               | 7293            | 5065                | 4256            | 2635            | 23955        | 14897                  |
| 40343          | 0.0          | 100.0            | 0.0        | 100.0              | 0.0053               | 7910            | 5493                | 4617            | 2858            | 25982        | 16156                  |
| 45591<br>47291 | 0.0          | 100.0            | 0.0        | 100.0              | 0.0049               | 804/<br>9773    | 5955<br>6440        | 4989            | 3350            | 28073        | 1/450                  |
| 51172          | 0.0          | 100.0            | 0.0        | 100.0              | 0.0041               | 10034           | 6968                | 5856            | 3625            | 32955        | 20494                  |
| 55387          | 0.0          | 100.0            | 0.0        | 100.0              | 0.0038               | 10860           | 7542                | 6339            | 3924            | 35673        | 22182                  |
| 59880          | 0.0          | 100.0            | 0.0        | 100.0              | 0.0035               | 11741           | 8153                | 6853            | 4242            | 38564        | 23979                  |

# Wall

Colauboun East 6



(B) Capillary Pressure Plot



ACS LABORATORIES

| Sample         | Depth            |                 |             | 478.          | lm                                |                                    |                           |                |                         |              |                        |
|----------------|------------------|-----------------|-------------|---------------|-----------------------------------|------------------------------------|---------------------------|----------------|-------------------------|--------------|------------------------|
| Client         | Geoscience       | Victoria        |             | Density G     | radients (psi/foot)               |                                    | Conv                      | ersion Paramet | ers (dynes/cm)          | )            |                        |
| Well           | Dulungalon       | g-2             |             |               | Typical                           |                                    |                           | air/water      | air/oil                 | oil/water    | CO <sub>2</sub> /water |
|                |                  | G               |             | Water:        | 0.440                             | Laboratory The                     | ta                        | 0.0            | 0.0                     | 30.0         | 0.0                    |
| Test Method    | Air/Mercury      | Capillary Press | sure        | Oil:<br>Gas:  | 0.330                             | Laboratory IF I<br>Reservoir Theta |                           | /2.0           | 24.0                    | 48.0         | 72.0                   |
| Sample         |                  |                 |             | 045.          | 0.100                             | Reservoir IFT                      |                           | 50.0           |                         | 30.0         | 26.0                   |
| Depth          | 478.10 m         |                 |             | CO2 Density   | 0.107                             | Laboratory Tcos                    | sTheta                    | 72.0           | 24.0                    | 42.0         | 72.0                   |
|                |                  |                 |             |               |                                   | Reservoir Tcos                     | Theta                     | 50.0           |                         | 26.0         | 26.0                   |
| Ambient Pern   | neability        |                 |             | System        | Estimated Column<br>Height (feet) | Entry P                            | ressure (psia)<br>Res Con | Displacement F | Pressure (psia)<br>Resv | Threshold P  | ressure (psia)<br>Resv |
| pore radius (µ | im)              | 0.190           |             | A-Hg          | na                                | 561                                | -                         | 709            | -                       | 806          | -                      |
|                |                  |                 |             | G-W           | 225                               | 110                                | 76.5                      | 139            | 96.7                    | 158          | 110                    |
|                |                  |                 |             | 0-W           | 361                               | 36.7                               | 39.8                      | 46.4           | 50.3                    | 52.7         | 57.1                   |
|                |                  |                 |             | 002-11        | 105                               | 110                                | 59.0                      | 157            | 50.5                    | 150          | 57.1                   |
|                |                  |                 |             |               |                                   | Equivalent                         | Injection Pressures       | Oil/Brine      | Oil/Brine               | Height Above | Height Above           |
| Decement       | Rav              | v Data          | Conforma    | nce Corrected | Pore                              | Air/Brine                          | Air/Brine                 | Lab            | Reservoir               | Free Water   | Free Water             |
| (psia)         | (percent)        | (percent)       | (percent)   | (percent)     | (um)                              | (psi)                              | (psi)                     | (psi)          | (psi)                   | (feet)       | (feet)                 |
| 4              | <i>a</i> · · · 3 | 4               | Q · · · · 3 | 4             | u ,                               | Q- )                               | <i>u</i> - <i>y</i>       | <i>a</i> - 1   | 4-3                     | (,           | (                      |
| 1.01           | 0.0              | 0.0             | 0.0         | 0.0           | 211                               | 0.20                               | 0.14                      | 0.12           | 0.07                    | 0.65         | 0.41                   |
| 1.98           | 6.5              | 6.5             | 0.0         | 0.0           | 107                               | 0.20                               | 0.27                      | 0.23           | 0.14                    | 1.28         | 0.79                   |
| 2.73           | 1.3              | 7.9             | 0.0         | 0.0           | 77.7                              | 0.54                               | 0.37                      | 0.31           | 0.19                    | 1.75         | 1.09                   |
| 3.18           | 0.4              | 8.2             | 0.0         | 0.0           | 66.7                              | 0.62                               | 0.43                      | 0.36           | 0.23                    | 2.05         | 1.27                   |
| 3.73           | 0.5              | 8.8             | 0.0         | 0.0           | 56.9<br>48 4                      | 0.73                               | 0.51                      | 0.43           | 0.26                    | 2.40         | 1.49                   |
| 4.58           | 0.5              | 9.5<br>10.0     | 0.0         | 0.0           | 40.4                              | 0.80                               | 0.00                      | 0.50           | 0.31                    | 2.82         | 2.08                   |
| 5.97           | 0.5              | 10.5            | 0.0         | 0.0           | 35.5                              | 1.17                               | 0.81                      | 0.68           | 0.42                    | 3.85         | 2.39                   |
| 6.97           | 0.7              | 11.2            | 0.0         | 0.0           | 30.4                              | 1.37                               | 0.95                      | 0.80           | 0.49                    | 4.49         | 2.80                   |
| 8.27           | 0.6              | 11.8            | 0.0         | 0.0           | 25.6                              | 1.62                               | 1.13                      | 0.95           | 0.59                    | 5.33         | 3.32                   |
| 9.97           | 0.7              | 12.4            | 0.0         | 0.0           | 21.3                              | 1.95                               | 1.35                      | 1.14           | 0.71                    | 6.42         | 3.97                   |
| 11.5           | 0.5              | 13.0            | 0.0         | 0.0           | 18.5                              | 2.23                               | 1.50                      | 1.52           | 0.82                    | 7.43         | 4.39<br>5.41           |
| 15.5           | 0.5              | 14.0            | 0.0         | 0.0           | 13.7                              | 3.04                               | 2.11                      | 1.77           | 1.10                    | 10.0         | 6.21                   |
| 18.5           | 0.6              | 14.6            | 0.0         | 0.0           | 11.5                              | 3.63                               | 2.52                      | 2.12           | 1.31                    | 11.9         | 7.41                   |
| 21.6           | 0.6              | 15.1            | 0.0         | 0.0           | 9.83                              | 4.24                               | 2.94                      | 2.47           | 1.53                    | 13.9         | 8.65                   |
| 25.3           | 0.6              | 15.8            | 0.0         | 0.0           | 8.39                              | 4.96                               | 3.44                      | 2.90           | 1.80                    | 16.4         | 10.1                   |
| 30.0           | 0.9              | 16.7            | 0.0         | 0.0           | 7.08                              | 5.88<br>7.69                       | 4.08                      | 5.43<br>4.49   | 2.12                    | 19.3         | 12.0                   |
| 49.0           | 0.4              | 17.4            | 0.0         | 0.0           | 4.33                              | 9.61                               | 6.67                      | 5.61           | 3.47                    | 31.5         | 19.6                   |
| 56.8           | 0.2              | 17.6            | 0.0         | 0.0           | 3.73                              | 11.1                               | 7.71                      | 6.50           | 4.02                    | 36.5         | 22.7                   |
| 67.3           | 0.3              | 18.0            | 0.0         | 0.0           | 3.15                              | 13.2                               | 9.17                      | 7.70           | 4.77                    | 43.4         | 27.0                   |
| 79.7           | 0.3              | 18.3            | 0.0         | 0.0           | 2.66                              | 15.6                               | 10.8                      | 9.12           | 5.65                    | 51.4         | 31.8                   |
| 95.5           | 0.4              | 18.0            | 0.0         | 0.0           | 1.93                              | 21.6                               | 12.7                      | 12.6           | 0.02<br>7.80            | 70.9         | 37.4<br>44.1           |
| 130            | 0.4              | 19.4            | 0.0         | 0.0           | 1.64                              | 25.5                               | 17.7                      | 14.9           | 9.22                    | 83.8         | 52.1                   |
| 154            | 0.5              | 19.9            | 0.0         | 0.0           | 1.37                              | 30.2                               | 21.0                      | 17.6           | 10.9                    | 99.1         | 61.8                   |
| 180            | 0.5              | 20.4            | 0.0         | 0.0           | 1.18                              | 35.3                               | 24.5                      | 20.6           | 12.8                    | 116          | 72.1                   |
| 211            | 0.5              | 20.9            | 0.0         | 0.0           | 1.01                              | 41.4                               | 28.8                      | 24.1           | 14.9                    | 135          | 84.7                   |
| 248            | 0.6              | 21.5            | 0.0         | 0.0           | 0.855                             | 48.0                               | 33.8                      | 28.4           | 20.7                    | 180          | 99.4<br>117            |
| 344            | 1.0              | 23.3            | 1.3         | 2.3           | 0.616                             | 67.5                               | 46.9                      | 39.4           | 24.4                    | 222          | 138                    |
| 404            | 1.2              | 24.5            | 1.5         | 3.9           | 0.524                             | 79.2                               | 55.0                      | 46.2           | 28.6                    | 260          | 162                    |
| 474            | 1.7              | 26.2            | 2.1         | 6.0           | 0.447                             | 92.9                               | 64.5                      | 54.2           | 33.6                    | 305          | 190                    |
| 556            | 2.0              | 28.2            | 2.6         | 8.6           | 0.381                             | 109                                | /5./                      | 63.6<br>74.3   | 39.4                    | 358          | 223                    |
| 759            | 3.7              | 34.8            | 4.7         | 17.0          | 0.279                             | 149                                | 103                       | 86.9           | 53.8                    | 489          | 303                    |
| 889            | 4.4              | 39.2            | 5.6         | 22.6          | 0.238                             | 174                                | 121                       | 102            | 63.1                    | 574          | 356                    |
| 1048           | 5.9              | 45.1            | 7.5         | 30.1          | 0.202                             | 205                                | 142                       | 120            | 74.3                    | 675          | 418                    |
| 1228           | 7.4              | 52.6            | 9.5         | 39.6          | 0.173                             | 241                                | 167                       | 141            | 87.3                    | 794          | 491                    |
| 1438           | 9.5              | 74 9            | 16.4        | 68.1          | 0.147                             | 331                                | 230                       | 103            | 102                     | 1082         | 676                    |
| 1828           | 7.7              | 82.6            | 9.8         | 77.8          | 0.116                             | 358                                | 249                       | 209            | 129                     | 1173         | 732                    |
| 2142           | 16.4             | 98.9            | 20.8        | 98.7          | 0.0990                            | 420                                | 292                       | 245            | 152                     | 1382         | 859                    |
| 2507           | 0.6              | 99.6            | 0.8         | 99.4          | 0.0846                            | 492                                | 342                       | 287            | 178                     | 1618         | 1006                   |
| 3445           | 0.0              | 99.0<br>99.6    | 0.0         | 99.4<br>99.4  | 0.0721                            | 675                                | 469                       | 394            | 209                     | 2218         | 1379                   |
| 4040           | 0.0              | 99.6            | 0.0         | 99.4          | 0.0525                            | 792                                | 550                       | 462            | 286                     | 2600         | 1618                   |
| 4726           | 0.3              | 99.8            | 0.3         | 99.8          | 0.0449                            | 927                                | 644                       | 541            | 335                     | 3045         | 1894                   |
| 5104           | 0.0              | 99.8            | 0.0         | 99.8          | 0.0415                            | 1001                               | 695                       | 584            | 362                     | 3291         | 2044                   |
| 5994<br>7022   | 0.0              | 99.8            | 0.0         | 99.8          | 0.0334                            | 1175                               | 956                       | 804            | 425                     | 3804<br>4527 | 2400                   |
| 7886           | 0.0              | 99.9            | 0.0         | 99.8          | 0.0269                            | 1546                               | 1074                      | 902            | 558                     | 5073         | 3159                   |
| 8916           | 0.1              | 100.0           | 0.2         | 100.0         | 0.0238                            | 1748                               | 1214                      | 1020           | 631                     | 5736         | 3571                   |
| 9648           | 0.0              | 100.0           | 0.0         | 100.0         | 0.0220                            | 1892                               | 1314                      | 1104           | 683                     | 6209         | 3865                   |
| 10452          | 0.0              | 100.0           | 0.0         | 100.0         | 0.0203                            | 2049                               | 1423                      | 1196           | 740                     | 6727         | 4185                   |
| 14332          | 0.0              | 100.0           | 0.0         | 100.0         | 0.0173                            | 2409                               | 1951                      | 1640           | 1015                    | 9227         | 5738                   |
| 16381          | 0.0              | 100.0           | 0.0         | 100.0         | 0.0129                            | 3212                               | 2231                      | 1875           | 1161                    | 10555        | 6562                   |
| 18479          | 0.0              | 100.0           | 0.0         | 100.0         | 0.0115                            | 3623                               | 2516                      | 2115           | 1309                    | 11900        | 7400                   |
| 20480          | 0.0              | 100.0           | 0.0         | 100.0         | 0.0104                            | 4016                               | 2789                      | 2344           | 1451                    | 13191        | 8203                   |
| 23148          | 0.0              | 100.0           | 0.0         | 100.0         | 0.0092                            | 4539                               | 3152                      | 2649           | 1640                    | 14909        | 9271                   |
| 25005          | 0.0              | 100.0           | 0.0         | 100.0         | 0.0085                            | 4713                               | 3695                      | 2008           | 1923                    | 17482        | 10868                  |
| 29377          | 0.0              | 100.0           | 0.0         | 100.0         | 0.0072                            | 5760                               | 4000                      | 3362           | 2081                    | 18918        | 11765                  |
| 31803          | 0.0              | 100.0           | 0.0         | 100.0         | 0.0067                            | 6236                               | 4331                      | 3640           | 2253                    | 20482        | 12738                  |
| 34423          | 0.0              | 100.0           | 0.0         | 100.0         | 0.0062                            | 6750                               | 4688                      | 3939           | 2438                    | 22164        | 13788                  |
| 37192          | 0.0              | 100.0           | 0.0         | 100.0         | 0.0057                            | 7293                               | 5065                      | 4256           | 2635                    | 23955        | 14897                  |
| 40542 43592    | 0.0              | 100.0           | 0.0         | 100.0         | 0.0053                            | 7910<br>8547                       | 5935                      | 401/<br>4989   | 2838<br>3088            | 23982        | 17456                  |
| 47295          | 0.0              | 100.0           | 0.0         | 100.0         | 0.0045                            | 9274                               | 6440                      | 5413           | 3351                    | 30464        | 18941                  |
| 51172          | 0.0              | 100.0           | 0.0         | 100.0         | 0.0041                            | 10034                              | 6968                      | 5856           | 3625                    | 32955        | 20494                  |
| 55386          | 0.0              | 100.0           | 0.0         | 100.0         | 0.0038                            | 10860                              | 7542                      | 6338           | 3924                    | 35673        | 22182                  |
| 59880          | 0.0              | 100.0           | 0.0         | 100.0         | 0.0035                            | 11/41                              | 8153                      | 0853           | 4242                    | 58504        | 25979                  |

#### Well Sample Depth

Dulungalong-2 478 1 m







#### Well Sample Depth

Flounder-6 1929.38 m



| Client          | Geoscience Victoria               |                              | Conversion Parameters     |                       |                                                 |            |            |              |              |
|-----------------|-----------------------------------|------------------------------|---------------------------|-----------------------|-------------------------------------------------|------------|------------|--------------|--------------|
| Well            | Flounder-6                        |                              |                           |                       |                                                 | conversio  | air/water  | air/oil      | oil/water    |
|                 |                                   |                              |                           | Laboratory Thet       | a                                               |            | 0.0        | 0.0          | 30.0         |
| Test Method     | Air/Mercury Capillary Pressure Dr | ainage                       |                           | Laboratory IFT        |                                                 |            | 72.0       | 24.0         | 48.0         |
|                 |                                   |                              |                           | Reservoir Theta       | L                                               |            | 0.0        |              | 30.0         |
| Sample          | Flounder-6                        | Ambient Perme                | ability                   | Reservoir IFT         | Th sta                                          |            | 50.0       | 24.0         | 30.0         |
| Deptn           | 1929.58 m Ambient Porosity        |                              |                           |                       | Laboratory I cos I neta<br>Reservoir Tees Theta |            |            | 24.0         | 26.0         |
| pore radius (um | 7                                 |                              |                           | Reservoir reost       | Density Gradients, psi/                         | foot       | 50.0       | -            | 20.0         |
| 0.063           | Entry Pressure (psia)             | Displacement Pressure (psia) | Threshold Pressure (psia) |                       |                                                 | Typical    | 1          |              |              |
| System          | Lab Resv                          | Lab Resv                     | Lab Resv                  | Water:                |                                                 | 0.440      | 1          |              |              |
| A-Hg            | 1703 -                            | 3833 -                       | 4223.0 -                  | Oil:                  |                                                 | 0.330      |            |              |              |
| G-W             | 334.1 232.0                       | 752.0 522.2                  | 828.5 575.3               | Gas:                  |                                                 | 0.100      |            |              |              |
| 0-W             | 111.4 120.6                       | 250./ 2/1.5                  | 276.2 299.2               |                       |                                                 |            |            |              |              |
|                 |                                   |                              |                           |                       | ** **                                           |            |            |              |              |
| Programa        | Intrusion                         | Saturation                   | Pore                      | Equivalent<br>A/P Lab | A/P P oc                                        | O/P Lab    | O/P Pag    | Watar (faat) | Watar (faat) |
| (nsia)          | (nercent)                         | (percent)                    | (um)                      | A/B Lab               | A/D Kcs                                         | O/B Lab    | O/B Res    | Oil-Water    | Gas-Water    |
| (pom)           | (percent)                         | (percent)                    | (μ)                       |                       |                                                 |            |            | on water     | Gub Water    |
|                 |                                   |                              |                           |                       |                                                 |            |            |              |              |
| 1.00            | 0.0                               | 0.0                          | 213                       | 0.20                  | 0.14                                            | 0.11       | 0.07       | 0.64         | 0.40         |
| 1.98            | 0.0                               | 0.0                          | 107                       | 0.39                  | 0.27                                            | 0.23       | 0.14       | 1.28         | 0.79         |
| 2.73            | 0.0                               | 0.0                          | //./                      | 0.54                  | 0.37                                            | 0.31       | 0.19       | 1.76         | 1.09         |
| 3 73            | 0.0                               | 0.0                          | 56.9                      | 0.02                  | 0.51                                            | 0.43       | 0.25       | 2.40         | 1.27         |
| 4.38            | 0.0                               | 0.0                          | 48.4                      | 0.86                  | 0.60                                            | 0.50       | 0.31       | 2.82         | 1.75         |
| 5.18            | 0.0                               | 0.0                          | 40.9                      | 1.02                  | 0.71                                            | 0.59       | 0.37       | 3.34         | 2.07         |
| 5.98            | 0.0                               | 0.0                          | 35.5                      | 1.2                   | 0.81                                            | 0.68       | 0.42       | 3.85         | 2.39         |
| 6.97            | 0.0                               | 0.0                          | 30.4                      | 1.4                   | 0.95                                            | 0.80       | 0.49       | 4.49         | 2.79         |
| 8.27            | 0.0                               | 0.0                          | 25.6                      | 1.6                   | 1.13                                            | 0.95       | 0.59       | 5.33<br>6.42 | 3.31         |
| 9.97            | 0.0                               | 0.0                          | 21.3                      | 2.0                   | 1.4                                             | 1.14       | 0.81       | 7.41         | 4,61         |
| 13.5            | 0.0                               | 0.0                          | 15.7                      | 2.6                   | 1.8                                             | 1.5        | 0.96       | 8.69         | 5.41         |
| 15.5            | 0.0                               | 0.0                          | 13.7                      | 3.0                   | 2.1                                             | 1.8        | 1.10       | 9.98         | 6.21         |
| 18.5            | 0.0                               | 0.0                          | 11.5                      | 3.6                   | 2.5                                             | 2.1        | 1.3        | 11.91        | 7.41         |
| 21.6            | 0.0                               | 0.0                          | 9.83                      | 4.2                   | 2.9                                             | 2.5        | 1.5        | 13.91        | 8.65         |
| 25.3            | 0.0                               | 0.0                          | 8.39                      | 5.0                   | 3.4                                             | 2.9        | 1.8        | 16.29        | 10.13        |
| 38.0            | 0.0                               | 0.0                          | 7.08                      | 5.9                   | 4.1                                             | 3.4        | 2.1        | 25.05        | 12.01        |
| 48.9            | 0.0                               | 0.0                          | 4.33                      | 9.6                   | 6.7                                             | 5.6        | 3.5        | 31.49        | 19.58        |
| 58.2            | 0.0                               | 0.0                          | 3.64                      | 11.4                  | 7.9                                             | 6.7        | 4.1        | 37.48        | 23.31        |
| 69.2            | 0.0                               | 0.0                          | 3.06                      | 14                    | 9.4                                             | 7.9        | 4.9        | 44.57        | 27.71        |
| 80.8            | 0.0                               | 0.0                          | 2.62                      | 16                    | 11.0                                            | 9.2        | 5.7        | 52.04        | 32.36        |
| 91.4            | 0.0                               | 0.0                          | 2.32                      | 18                    | 12                                              | 10.5       | 6.5        | 58.87        | 36.60        |
| 131             | 0.0                               | 0.0                          | 1.92                      | 22                    | 13                                              | 15         | 93         | 84.37        | 52.46        |
| 154             | 0.0                               | 0.0                          | 1.02                      | 30                    | 21                                              | 18         | 10.9       | 99.18        | 61.67        |
| 179             | 0.0                               | 0.0                          | 1.18                      | 35                    | 24                                              | 20         | 13         | 115.28       | 71.69        |
| 211             | 0.0                               | 0.0                          | 1.00                      | 41                    | 29                                              | 24         | 15         | 135.9        | 84.50        |
| 249             | 0.0                               | 0.0                          | 0.853                     | 49                    | 34                                              | 28         | 18         | 160.4        | 99.72        |
| 294             | 0.0                               | 0.0                          | 0.722                     | 58                    | 40                                              | 34         | 21         | 189.3        | 117.74       |
| 345             | 0.0                               | 0.0                          | 0.614                     | 68<br>79              | 47                                              | 39         | 24         | 222.2        | 158.2        |
| 403             | 0.0                               | 0.0                          | 0.525                     | 93                    | 64                                              | 54         | 34         | 304.6        | 189.4        |
| 556             | 0.0                               | 0.0                          | 0.381                     | 109                   | 76                                              | 64         | 39         | 358.1        | 222.7        |
| 651             | 0.0                               | 0.0                          | 0.326                     | 128                   | 89                                              | 75         | 46         | 419.3        | 260.7        |
| 757             | 0.0                               | 0.0                          | 0.280                     | 148                   | 103                                             | 87         | 54         | 487.5        | 303.2        |
| 889             | 0.0                               | 0.0                          | 0.239                     | 1/4                   | 121                                             | 102        | 63         | 5/2.6        | 356.0        |
| 1228            | 0.0                               | 0.0                          | 0.202                     | 203                   | 167                                             | 141        | 87         | 790.9        | 491.8        |
| 1439            | 0.0                               | 0.0                          | 0.147                     | 282                   | 196                                             | 165        | 102        | 926.8        | 576.3        |
| 1692            | 0.0                               | 0.0                          | 0.125                     | 332                   | 230                                             | 194        | 120        | 1089.7       | 677.6        |
| 1828            | 1.0                               | 0.7                          | 0.116                     | 358                   | 249                                             | 209        | 130        | 1177         | 732.1        |
| 2143            | 1.7                               | 2.4                          | 0.098                     | 9 420<br>1 492        | 292                                             | 245        | 152        | 1580         | 858.2        |
| 2947            | 1.0                               | 4.9                          | 0.034                     | 9 578                 | 401                                             | 337        | 209        | 1898         | 1180         |
| 3449            | 1.1                               | 6.0                          | 0.061                     | 5 676                 | 470                                             | 395        | 244        | 2221         | 1381         |
| 4041            | 1.8                               | 7.8                          | 0.052                     | 5 792                 | 550                                             | 462        | 286        | 2603         | 1618         |
| 4735            | 4.9                               | 12.8                         | 0.044                     | 8 928                 | 645                                             | 542        | 335        | 3050         | 1896         |
| 5112            | 6.U<br>8 3                        | 15.1                         | 0.041                     | 3 1002                | 696<br>818                                      | 585<br>687 | 362<br>425 | 3292         | 2047         |
| 7025            | o.5<br>7.4                        | 20.5                         | 0.030                     | 2 1377                | 957                                             | 804        | 498        | 4524         | 2813         |
| 7888            | 7.0                               | 37.8                         | 0.026                     | 9 1547                | 1074                                            | 903        | 559        | 5080         | 3159         |
| 8919            | 8.1                               | 45.9                         | 0.023                     | 8 1749                | 1214                                            | 1021       | 632        | 5744         | 3572         |
| 9650            | 5.9                               | 51.8                         | 0.022                     | 0 1892                | 1314                                            | 1104       | 684        | 6215         | 3865         |
| 10451           | 5.7                               | 57.5                         | 0.020                     | 3 2049                | 1423                                            | 1196       | 740        | 6731         | 4185         |
| 14335           | 9.0                               | 73.8                         | 0.017                     | 5 2409<br>8 2811      | 1075                                            | 1406       | 1016       | 0232         | 4920         |
| 16380           | 4.8                               | 78.6                         | 0.014                     | 3 3212                | 2230                                            | 1875       | 1160       | 10549        | 6560         |
| 18483           | 3.3                               | 81.8                         | 0.011                     | 5 3624                | 2517                                            | 2115       | 1309       | 11904        | 7402         |
| 20484           | 2.4                               | 84.3                         | 0.010                     | 3 4016                | 2789                                            | 2344       | 1451       | 13193        | 8204         |
| 23149           | 2.6                               | 86.9                         | 0.009                     | 2 4539                | 3152                                            | 2649       | 1640       | 14909        | 9271         |
| 25066           | 1.5                               | 88.4                         | 0.008                     | 5 4915                | 3413                                            | 2869       | 1776       | 16144        | 10039        |
| 2/13/<br>29378  | 1.5                               | 89.9                         | 0.007                     | 5 5321<br>5 5760      | 3695                                            | 3362       | 1923       | 1/4//        | 10868        |
| 31805           | 1.3                               | 92.5                         | 0.007.                    | 7 6236                | 4331                                            | 3640       | 2253       | 20484        | 12737        |
| 34424           | 1.2                               | 93.7                         | 0.006                     | 2 6750                | 4687                                            | 3940       | 2439       | 22171        | 13786        |
| 37194           | 1.1                               | 94.8                         | 0.005                     | 7 7293                | 5065                                            | 4257       | 2635       | 23955        | 14896        |
| 40342           | 1.1                               | 95.8                         | 0.005                     | 3 7910                | 5493                                            | 4617       | 2858       | 25982        | 16156        |
| 43593           | 0.9                               | 96.7                         | 0.004                     | 9 8548                | 5936                                            | 4989       | 3088       | 28076        | 17458        |
| 4/294 51170     | 0.9                               | 97.7                         | 0.004                     | 9273<br>1 10033       | 0440<br>6968                                    | 5856       | 3625       | 32956        | 20493        |
| 55385           | 0.8                               | 99.3                         | 0.004                     | 8 10860               | 7542                                            | 6338       | 3924       | 35670        | 22181        |
| 50970           | 0.7                               | 100.0                        | 0.002                     | 5 11741               | 9152                                            | (952       | 12.12      | 20565        | 22081        |



(B) Capillary Pressure Plot



(C) Pore Size Distribution plot

| Well<br>Sample                | Depth            |                      | F<br>2     | ortescue<br>420 m            | -2                   |                           |                      |                        |                         |                         |                         |
|-------------------------------|------------------|----------------------|------------|------------------------------|----------------------|---------------------------|----------------------|------------------------|-------------------------|-------------------------|-------------------------|
| Client                        | Geoscience       | AVictoria            |            | Density G                    | Gradients (psi/foot) |                           | Con                  | version Paramet        | ers (dynes/cm)          |                         | - <b>6</b> 0 ( )        |
| Well                          | Fortescue-2      |                      |            | Water:                       | 0.440                | Laboratory Thet           | a                    | 0.0                    | 0.0                     | 30.0                    | 0.0                     |
| Test Method                   | Air/Mercury      | Capillary Press      | ure        | Oil:                         | 0.330                | Laboratory IFT            |                      | 72.0                   | 24.0                    | 48.0                    | 72.0                    |
| Sample                        | F2-1             |                      | Gas:       | 0.100                        | Reservoir IFT        |                           | 50.0                 |                        | 30.0                    | 26.0                    |                         |
| Depth                         | 2420.00 m        |                      |            | CO2 Density                  | 0.556                | Laboratory Tcos           | Theta                | 72.0                   | 24.0                    | 42.0                    | 72.0                    |
|                               |                  |                      |            |                              | Estimated Column     | Reservoir Tcos<br>Entry F | ressure (psia)       | 50.0<br>Displacement I | Pressure (psia)         | 26.0<br>Threshold P     | 26.0<br>ressure (psia)  |
| <b>Pore radius (μm)</b> 0.040 |                  |                      | System     | Height (feet)                | Lab                  | Res Con                   | Lab                  | Resv                   | Lab                     | Resv                    |                         |
|                               |                  |                      |            | A-Hg<br>G-W                  | na<br>1078           | 528                       | - 367                | 653                    | - 453                   | 713                     | - 495                   |
|                               |                  |                      |            | 0-W                          | 1733                 | 176                       | 191                  | 218                    | 236                     | 238                     | 258                     |
|                               |                  |                      |            | C0 <sub>2</sub> -w           | 992                  | 528                       | 191                  | 653                    | 236                     | /13                     | 258                     |
|                               |                  |                      |            |                              |                      | Equivalent                | Injection Pressures  | Oil/Brine              | Oil/Brine               | Height Above            | Height Above            |
| Pressure                      | Raw<br>Intrusion | V Data<br>Saturation | Intrusion  | ance Corrected<br>Saturation | Pore<br>Diameter     | Air/Brine<br>Lab          | Air/Brine<br>Res Con | Lab<br>Conditions      | Reservoir<br>Conditions | Free Water<br>Oil-Water | Free Water<br>Gas-Water |
| (psia)                        | (percent)        | (percent)            | (percent)  | (percent)                    | (µm)                 | (psi)                     | (psi)                | (psi)                  | (psi)                   | (feet)                  | (feet)                  |
| 1.00                          | 0.0              | 0.0                  | 0.0        | 0.0                          | 211                  | 0.20                      | 0.14                 | 0.11                   | 0.07                    | 0.64                    | 0.40                    |
| 1.98                          | 0.0              | 0.0                  | 0.0        | 0.0                          | 107                  | 0.39                      | 0.27                 | 0.23                   | 0.14                    | 1.28                    | 0.79                    |
| 3.18                          | 0.0              | 0.0                  | 0.0        | 0.0                          | 66.7                 | 0.62                      | 0.43                 | 0.36                   | 0.23                    | 2.05                    | 1.09                    |
| 3.73                          | 0.0              | 0.0                  | 0.0        | 0.0                          | 56.9                 | 0.73                      | 0.51                 | 0.43                   | 0.26                    | 2.40                    | 1.49                    |
| 4.38<br>5.18                  | 0.0              | 0.0                  | 0.0        | 0.0                          | 48.4<br>41.0         | 1.02                      | 0.60                 | 0.50                   | 0.31                    | 2.82                    | 2.08                    |
| 5.98                          | 0.0              | 0.0                  | 0.0        | 0.0                          | 35.5                 | 1.17                      | 0.81                 | 0.68                   | 0.42                    | 3.85                    | 2.39                    |
| 6.97<br>8 27                  | 0.0              | 0.0                  | 0.0        | 0.0                          | 30.4<br>25.6         | 1.37                      | 0.95                 | 0.80                   | 0.49                    | 4.49                    | 2.80                    |
| 9.97                          | 0.0              | 0.0                  | 0.0        | 0.0                          | 21.3                 | 1.95                      | 1.35                 | 1.14                   | 0.71                    | 6.42                    | 3.97                    |
| 11.5                          | 0.0              | 0.0                  | 0.0        | 0.0                          | 18.5                 | 2.25                      | 1.56                 | 1.32                   | 0.82                    | 7.43                    | 4.59                    |
| 13.5                          | 0.0              | 0.0                  | 0.0        | 0.0                          | 13.7                 | 2.65                      | 2.11                 | 1.54                   | 0.95                    | 8.66                    | 6.21                    |
| 18.5                          | 0.0              | 0.0                  | 0.0        | 0.0                          | 11.5                 | 3.63                      | 2.52                 | 2.12                   | 1.31                    | 11.9                    | 7.41                    |
| 21.6<br>25.3                  | 0.0              | 0.0                  | 0.0        | 0.0                          | 9.83<br>8.39         | 4.24                      | 2.94                 | 2.47                   | 1.53                    | 13.9<br>16.4            | 8.65                    |
| 30.0                          | 0.0              | 0.0                  | 0.0        | 0.0                          | 7.08                 | 5.88                      | 4.08                 | 3.43                   | 2.12                    | 19.3                    | 12.0                    |
| 37.2                          | 0.1              | 0.1                  | 0.0        | 0.0                          | 5.70                 | 7.29                      | 5.06                 | 4.26                   | 2.64                    | 24.0                    | 14.9                    |
| 47.2<br>56.6                  | 0.4              | 0.5                  | 0.0        | 0.0                          | 3.75                 | 9.25                      | 7.71                 | 5.40<br>6.48           | 4.01                    | 36.5                    | 22.7                    |
| 66.3                          | 0.2              | 0.9                  | 0.0        | 0.0                          | 3.20                 | 13.0                      | 9.03                 | 7.59                   | 4.70                    | 42.7                    | 26.6                    |
| 80.4<br>93.0                  | 0.3              | 1.2                  | 0.0        | 0.0                          | 2.64                 | 15.8                      | 11.0                 | 9.20<br>10.6           | 5.70                    | 51.8<br>59.6            | 32.4<br>37.1            |
| 111                           | 0.2              | 1.6                  | 0.2        | 0.2                          | 1.91                 | 21.8                      | 15.1                 | 12.7                   | 7.86                    | 71.5                    | 44.4                    |
| 129                           | 0.2              | 1.8                  | 0.2        | 0.4                          | 1.65                 | 25.3                      | 17.6                 | 14.8                   | 9.16<br>10.8            | 83.3<br>98.2            | 51.8                    |
| 179                           | 0.2              | 2.0                  | 0.2        | 0.8                          | 1.18                 | 35.1                      | 24.4                 | 20.5                   | 12.7                    | 115                     | 71.8                    |
| 210                           | 0.2              | 2.5                  | 0.2        | 1.1                          | 1.01                 | 41.2                      | 28.6                 | 24.0                   | 14.9                    | 135                     | 84.1                    |
| 247                           | 0.2              | 2.7                  | 0.2        | 1.5                          | 0.880                | 48.4<br>57.3              | 39.8                 | 28.5<br>33.4           | 20.7                    | 139                     | 98.8                    |
| 343                           | 0.3              | 3.2                  | 0.3        | 1.8                          | 0.619                | 67.3                      | 46.7                 | 39.3                   | 24.3                    | 221                     | 137                     |
| 401 472                       | 0.3              | 3.4<br>3.7           | 0.3        | 2.0                          | 0.528                | 78.6<br>92.5              | 54.6<br>64.2         | 45.9<br>54.0           | 28.4                    | 258<br>304              | 161                     |
| 553                           | 0.3              | 4.0                  | 0.3        | 2.7                          | 0.383                | 108                       | 75.0                 | 63.3                   | 39.2                    | 356                     | 221                     |
| 647<br>757                    | 0.3              | 4.4                  | 0.3        | 3.0                          | 0.328                | 127                       | 88.2                 | 74.0                   | 45.8                    | 416                     | 259                     |
| 887                           | 0.4              | 5.2                  | 0.5        | 3.9                          | 0.239                | 174                       | 105                  | 102                    | 63.1                    | 574                     | 356                     |
| 1048                          | 0.5              | 5.7                  | 0.5        | 4.4                          | 0.202                | 205                       | 142                  | 120                    | 74.3                    | 675                     | 418                     |
| 1439                          | 0.8              | 6.5<br>7.1           | 0.8        | 5.8                          | 0.147                | 241 282                   | 196                  | 140                    | 102                     | /88<br>927              | 576                     |
| 1688                          | 1.1              | 8.2                  | 1.1        | 6.9                          | 0.126                | 331                       | 230                  | 193                    | 119                     | 1082                    | 676                     |
| 1828 2142                     | 0.7<br>1.9       | 8.9<br>10.8          | 0.8<br>1.9 | 7.6<br>9.5                   | 0.116<br>0.0990      | 358<br>420                | 249<br>292           | 209<br>245             | 129<br>152              | 1173 1382               | 732<br>859              |
| 2510                          | 2.9              | 13.7                 | 2.9        | 12.4                         | 0.0845               | 492                       | 342                  | 287                    | 178                     | 1618                    | 1006                    |
| 2945<br>3449                  | 3.2<br>5.7       | 16.8<br>22.5         | 3.2        | 15.6<br>21.4                 | 0.0720               | 577<br>676                | 401<br>469           | 337<br>395             | 209<br>245              | 1900<br>2227            | 1179<br>1379            |
| 4040                          | 6.4              | 28.9                 | 6.5        | 27.9                         | 0.0525               | 792                       | 550                  | 462                    | 286                     | 2600                    | 1618                    |
| 4728                          | 12.7             | 41.6                 | 12.8       | 40.8                         | 0.0448               | 927                       | 644                  | 541                    | 335                     | 3045                    | 1894                    |
| 6002                          | 0./              | 48.3                 | 0.8        | 47.6<br>64.8                 | 0.0415               | 11003                     | 817                  | 585<br>687             | 425                     | 3864                    | 2050                    |
| 7033                          | 19.9             | 85.2                 | 20.2       | 85.0                         | 0.0301               | 1379                      | 958                  | 805                    | 498                     | 4527                    | 2818                    |
| 7895<br>8920                  | 13.0             | 98.2<br>100.0        | 13.2       | 98.2<br>100 0                | 0.0269               | 1548<br>1749              | 1075                 | 904<br>1021            | 560<br>632              | 5091<br>5745            | 3162<br>3574            |
| 9649                          | 0.0              | 100.0                | 0.0        | 100.0                        | 0.0220               | 1892                      | 1314                 | 1104                   | 683                     | 6209                    | 3865                    |
| 10452                         | 0.0              | 100.0                | 0.0        | 100.0                        | 0.0203               | 2049                      | 1423                 | 1196<br>1406           | 740<br>870              | 6727<br>7909            | 4185                    |
| 14333                         | 0.0              | 100.0                | 0.0        | 100.0                        | 0.0148               | 2810                      | 1951                 | 1640                   | 1015                    | 9227                    | 5738                    |
| 16381                         | 0.0              | 100.0                | 0.0        | 100.0                        | 0.0129               | 3212                      | 2231                 | 1875                   | 1161                    | 10555                   | 6562                    |
| 20481                         | 0.0              | 100.0                | 0.0        | 100.0                        | 0.0113               | 4016                      | 2789                 | 2344                   | 1451                    | 13191                   | 8203                    |
| 23149                         | 0.0              | 100.0                | 0.0        | 100.0                        | 0.0092               | 4539                      | 3152                 | 2649                   | 1640                    | 14909                   | 9271                    |
| 25064<br>27135                | 0.0              | 100.0<br>100.0       | 0.0        | 100.0<br>100.0               | 0.0085               | 4915<br>5321              | 3413<br>3695         | 2868<br>3105           | 1775<br>1922            | 16136<br>17473          | 10038<br>10868          |
| 29376                         | 0.0              | 100.0                | 0.0        | 100.0                        | 0.0072               | 5760                      | 4000                 | 3362                   | 2081                    | 18918                   | 11765                   |
| 31804                         | 0.0              | 100.0                | 0.0        | 100.0                        | 0.0067               | 6236<br>6749              | 4331                 | 3640                   | 2253                    | 20482                   | 12738                   |
| 37192                         | 0.0              | 100.0                | 0.0        | 100.0                        | 0.0057               | 7293                      | 5065                 | 4256                   | 2438                    | 23955                   | 14897                   |
| 40343                         | 0.0              | 100.0                | 0.0        | 100.0                        | 0.0053               | 7910                      | 5493                 | 4617                   | 2858                    | 25982                   | 16156                   |
| 43591<br>47291                | 0.0              | 100.0                | 0.0        | 100.0                        | 0.0049<br>0.0045     | 8547<br>9273              | 5935<br>6440         | 4989<br>5412           | 3088<br>3350            | 28073 30455             | 17456                   |
| 51172                         | 0.0              | 100.0                | 0.0        | 100.0                        | 0.0041               | 10034                     | 6968                 | 5856                   | 3625                    | 32955                   | 20494                   |
| 55387                         | 0.0              | 100.0                | 0.0        | 100.0                        | 0.0038               | 10860                     | 7542                 | 6339                   | 3924                    | 35673                   | 22182                   |



(B) Capillary Pressure Plot



(C) Pore Size Distribution plot
| /ell<br>ample  | Depth       |                 | F<br>2     | ortescue<br>430 m  | -2                   |                 |                         |                        |                 |                     |                        |
|----------------|-------------|-----------------|------------|--------------------|----------------------|-----------------|-------------------------|------------------------|-----------------|---------------------|------------------------|
| lient          | Geoscience  | AVictoria       |            | Density (          | Fradients (nsi/foot) |                 | Con                     | version Paramot        | ers (dynes/em)  | )                   |                        |
| /ell           | Fortescue-2 |                 |            | Density C          | Typical              | 1               | 01                      | air/water              | air/oil         | oil/water           | CO <sub>2</sub> /water |
|                |             |                 |            | Water:             | 0.440                | Laboratory The  | ta                      | 0.0                    | 0.0             | 30.0                | 0.0                    |
| est Method     | Air/Mercury | Capillary Press | ure        | Oil:               | 0.330                | Laboratory IFT  |                         | 72.0                   | 24.0            | 48.0                | 72.0                   |
|                |             |                 |            | Gas:               | 0.100                | Reservoir Theta | L                       | 0.0                    |                 | 30.0                | 0.0                    |
| mple           | F2-2        |                 |            | CO Density         | 0.559                | Reservoir IFT   | -Th -t-                 | 50.0                   | 24.0            | 30.0                | 26.0                   |
| ptn            | 2430.00 m   |                 |            | $CO_2$ Density     | 0.558                | Laboratory 1 co | 5 i ricia<br>Thata      | /2.0                   | 24.0            | 42.0                | 12.0                   |
|                |             |                 |            |                    | Estimated Column     | Fntry I         | Pressure (psia)         | 50.0<br>Displacement F | Pressure (nsia) | 20.0<br>Threshold P | 20.0<br>ressure (psia) |
| re radius (I   | um)         | 0.067           |            | System             | Height (feet)        | Lab             | Res Con                 | Lab                    | Resv            | Lab                 | Resv                   |
|                |             |                 |            | A-Hg               | na                   | 1585            | -                       | 2048                   | -               | 2587                | -                      |
|                |             |                 |            | G-W                | 635                  | 311             | 216                     | 402                    | 279             | 508                 | 352                    |
|                |             |                 |            | O-W                | 1021                 | 104             | 112                     | 134                    | 145             | 169                 | 183                    |
|                |             |                 |            | CO <sub>2</sub> -W | 587                  | 311             | 112                     | 402                    | 145             | 508                 | 183                    |
|                |             |                 |            |                    |                      | Emission        | Initation Decomposition | Oil/Drin -             | Oil/Daina       | II.: ht Abarra      | II                     |
|                | Ray         | 7 Data          | Conform    | ance Corrected     | Pore                 | Air/Brine       | Air/Brine               | Lab                    | Reservoir       | Free Water          | Free Water             |
| Pressure       | Intrusion   | Saturation      | Intrusion  | Saturation         | Diameter             | Lab             | Res Con                 | Conditions             | Conditions      | Oil-Water           | Gas-Water              |
| (psia)         | (percent)   | (percent)       | (percent)  | (percent)          | (µm)                 | (psi)           | (psi)                   | (psi)                  | (psi)           | (feet)              | (feet)                 |
|                |             |                 |            | • ·                |                      |                 |                         | · ·                    |                 |                     |                        |
|                |             |                 |            |                    |                      |                 |                         |                        |                 |                     |                        |
| 1.00           | 0.0         | 0.0             | 0.0        | 0.0                | 211                  | 0.20            | 0.14                    | 0.11                   | 0.07            | 0.64                | 0.40                   |
| 1.98           | 1.8         | 1.8             | 0.0        | 0.0                | 107                  | 0.39            | 0.27                    | 0.23                   | 0.14            | 1.28                | 0.79                   |
| 2.75           | 0.7         | 2.4             | 0.0        | 0.0                | 66 7                 | 0.54            | 0.43                    | 0.31                   | 0.19            | 2.05                | 1.09                   |
| 3.73           | 0.4         | 3.2             | 0.0        | 0.0                | 56.9                 | 0.73            | 0.51                    | 0.43                   | 0.25            | 2.40                | 1.49                   |
| 4.38           | 0.2         | 3.4             | 0.0        | 0.0                | 48.4                 | 0.86            | 0.60                    | 0.50                   | 0.31            | 2.82                | 1.76                   |
| 5.18           | 0.3         | 3.8             | 0.0        | 0.0                | 41.0                 | 1.02            | 0.71                    | 0.59                   | 0.37            | 3.34                | 2.08                   |
| 5.98           | 0.3         | 4.1             | 0.0        | 0.0                | 35.5                 | 1.17            | 0.81                    | 0.68                   | 0.42            | 3.85                | 2.39                   |
| 6.97           | 0.3         | 4.4             | 0.0        | 0.0                | 30.4                 | 1.37            | 0.95                    | 0.80                   | 0.49            | 4.49                | 2.80                   |
| 8.27           | 0.3         | 4.7             | 0.0        | 0.0                | 25.6                 | 1.62            | 1.13                    | 0.95                   | 0.59            | 5.33                | 3.32                   |
| 9.97           | 0.3         | 5.0             | 0.0        | 0.0                | 21.3                 | 1.95            | 1.35                    | 1.14                   | 0.71            | 6.42                | 3.97                   |
| 11.5           | 0.2         | 5.4<br>5.4      | 0.0        | 0.0                | 18.3                 | 2.25            | 1.30                    | 1.52                   | 0.82            | 1.43<br>8.66        | 4.39                   |
| 15.5           | 0.2         | 5.6             | 0.0        | 0.0                | 13.7                 | 2.03            | 2 11                    | 1.54                   | 1 10            | 10.0                | 6.21                   |
| 18.5           | 0.2         | 5.8             | 0.0        | 0.0                | 11.5                 | 3.63            | 2.52                    | 2.12                   | 1.31            | 11.9                | 7.41                   |
| 21.6           | 0.2         | 6.0             | 0.0        | 0.0                | 9.83                 | 4.24            | 2.94                    | 2.47                   | 1.53            | 13.9                | 8.65                   |
| 25.3           | 0.1         | 6.1             | 0.0        | 0.0                | 8.39                 | 4.96            | 3.44                    | 2.90                   | 1.80            | 16.4                | 10.1                   |
| 30.0           | 0.2         | 6.4             | 0.0        | 0.0                | 7.08                 | 5.88            | 4.08                    | 3.43                   | 2.12            | 19.3                | 12.0                   |
| 37.2           | 0.0         | 6.4             | 0.0        | 0.0                | 5.70                 | 7.29            | 5.06                    | 4.26                   | 2.64            | 24.0                | 14.9                   |
| 47.2           | 0.1         | 6.5             | 0.0        | 0.0                | 4.49                 | 9.25            | 6.42                    | 5.40                   | 3.34            | 30.4                | 18.9                   |
| 50.0<br>66 3   | 0.1         | 0.0             | 0.0        | 0.0                | 3.75                 | 11.1            | 9.03                    | 0.48                   | 4.01            | 50.5<br>47 7        | 22.7                   |
| 80.4           | 0.1         | 67              | 0.0        | 0.0                | 2.64                 | 15.8            | 11.0                    | 9.20                   | 5 70            | 51.8                | 32.4                   |
| 93.0           | 0.1         | 6.8             | 0.0        | 0.0                | 2.28                 | 18.2            | 12.6                    | 10.6                   | 6.56            | 59.6                | 37.1                   |
| 111            | 0.1         | 7.0             | 0.0        | 0.0                | 1.91                 | 21.8            | 15.1                    | 12.7                   | 7.86            | 71.5                | 44.4                   |
| 129            | 0.1         | 7.1             | 0.0        | 0.0                | 1.65                 | 25.3            | 17.6                    | 14.8                   | 9.16            | 83.3                | 51.8                   |
| 152            | 0.2         | 7.3             | 0.0        | 0.0                | 1.39                 | 29.8            | 20.7                    | 17.4                   | 10.8            | 98.2                | 60.9                   |
| 179            | 0.2         | 7.4             | 0.0        | 0.0                | 1.18                 | 35.1            | 24.4                    | 20.5                   | 12.7            | 115                 | 71.8                   |
| 210            | 0.2         | 7.0             | 0.0        | 0.0                | 0.860                | 41.2            | 28.0                    | 24.0                   | 14.9            | 155                 | 84.1<br>98.8           |
| 292            | 0.2         | 81              | 0.0        | 0.0                | 0.300                | 57.3            | 39.8                    | 33.4                   | 20.7            | 188                 | 117                    |
| 343            | 0.3         | 8.3             | 0.0        | 0.0                | 0.619                | 67.3            | 46.7                    | 39.3                   | 24.3            | 221                 | 137                    |
| 401            | 0.3         | 8.6             | 0.0        | 0.0                | 0.528                | 78.6            | 54.6                    | 45.9                   | 28.4            | 258                 | 161                    |
| 472            | 0.3         | 8.9             | 0.0        | 0.0                | 0.449                | 92.5            | 64.2                    | 54.0                   | 33.4            | 304                 | 189                    |
| 553            | 0.3         | 9.2             | 0.0        | 0.0                | 0.383                | 108             | 75.0                    | 63.3                   | 39.2            | 356                 | 221                    |
| 04/<br>757     | 0.3         | 9.4<br>0.0      | 0.0        | 0.0                | 0.328                | 12/             | 88.2                    | /4.0                   | 45.8            | 416                 | 202                    |
| 887            | 0.5         | 9.8<br>10.2     | 0.0        | 0.0                | 0.280                | 148             | 105                     | 102                    | 55.0<br>63.1    | 40/<br>574          | 305                    |
| 1048           | 0.5         | 10.6            | 0.0        | 0.0                | 0.202                | 205             | 142                     | 120                    | 74.3            | 675                 | 418                    |
| 1227           | 0.5         | 11.2            | 0.6        | 0.6                | 0.173                | 241             | 167                     | 140                    | 86.7            | 788                 | 491                    |
| 1439           | 0.7         | 11.9            | 0.8        | 1.4                | 0.147                | 282             | 196                     | 165                    | 102             | 927                 | 576                    |
| 1688           | 0.9         | 12.8            | 1.0        | 2.4                | 0.126                | 331             | 230                     | 193                    | 119             | 1082                | 676                    |
| 1828           | 0.8         | 13.5            | 0.8        | 3.2                | 0.116                | 358             | 249                     | 209                    | 129             | 1173                | 732                    |
| 2142           | 4.0         | 13.7            | 2.4<br>4 5 | 5.0<br>10.1        | 0.0990               | 420             | 342                     | 243                    | 152             | 1582                | 839<br>1006            |
| 2945           | 4 9         | 24.6            | 5.5        | 15.6               | 0.0720               | 577             | 401                     | 337                    | 209             | 1900                | 1179                   |
| 3449           | 5.4         | 30.0            | 6.0        | 21.6               | 0.0615               | 676             | 469                     | 395                    | 245             | 2227                | 1379                   |
| 4040           | 5.1         | 35.1            | 5.7        | 27.3               | 0.0525               | 792             | 550                     | 462                    | 286             | 2600                | 1618                   |
| 4728           | 7.6         | 42.6            | 8.5        | 35.8               | 0.0448               | 927             | 644                     | 541                    | 335             | 3045                | 1894                   |
| 5114           | 3.0         | 45.6            | 3.4        | 39.2               | 0.0415               | 1003            | 697                     | 585                    | 362             | 3291                | 2050                   |
| 6002           | 6.3         | 51.9            | 7.0        | 46.2               | 0.0353               | 1177            | 817                     | 687                    | 425             | 3864                | 2403                   |
| 7895           | 0.6<br>4.6  | 58.5<br>63.1    | 1.5        | 53.5<br>58 7       | 0.0301               | 15/9            | 958<br>1075             | 805                    | 498             | 4527                | 2818                   |
| 8920           | 4.0         | 67.9            | 53         | 64 1               | 0.0209               | 1740            | 1215                    | 1021                   | 632             | 5745                | 3574                   |
| 9649           | 3.0         | 70.9            | 3.3        | 67.4               | 0.0220               | 1892            | 1314                    | 1104                   | 683             | 6209                | 3865                   |
| 10452          | 3.1         | 74.0            | 3.5        | 70.9               | 0.0203               | 2049            | 1423                    | 1196                   | 740             | 6727                | 4185                   |
| 12283          | 5.6         | 79.6            | 6.3        | 77.2               | 0.0173               | 2408            | 1672                    | 1406                   | 870             | 7909                | 4918                   |
| 14333          | 3.9         | 83.5            | 4.4        | 81.5               | 0.0148               | 2810            | 1951                    | 1640                   | 1015            | 9227                | 5738                   |
| 16381          | 3.9         | 87.4            | 4.4        | 85.9               | 0.0129               | 3212            | 2231                    | 1875                   | 1161            | 10555               | 6562                   |
| 18481          | 2.9         | 90.3            | 3.2        | 89.1               | 0.0115               | 3624            | 2517                    | 2115                   | 1309            | 11900               | 7403                   |
| 20481          | 1.7         | 92.0            | 1.9        | 91.1               | 0.0104               | 4016            | 2789                    | 2344                   | 1451            | 13191               | 8203                   |
| 25149          | 2.2         | 94.2<br>95.0    | 2.5        | 95.0<br>94.4       | 0.0092               | 4009            | 3132                    | 2049                   | 1040            | 14909               | 92/1                   |
| 27135          | 12          | 96.2            | 14         | 95.8               | 0.0078               | 5321            | 3695                    | 3105                   | 1922            | 17473               | 10868                  |
| 29376          | 0.6         | 96.9            | 0.7        | 96.5               | 0.0072               | 5760            | 4000                    | 3362                   | 2081            | 18918               | 11765                  |
| 31804          | 0.9         | 97.8            | 1.1        | 97.6               | 0.0067               | 6236            | 4331                    | 3640                   | 2253            | 20482               | 12738                  |
| 34421          | 0.7         | 98.5            | 0.7        | 98.3               | 0.0062               | 6749            | 4687                    | 3939                   | 2438            | 22164               | 13785                  |
| 37192          | 0.7         | 99.2            | 0.8        | 99.1               | 0.0057               | 7293            | 5065                    | 4256                   | 2635            | 23955               | 14897                  |
| 40343          | 0.6         | 99.8            | 0.7        | 99.8               | 0.0053               | 7910            | 5493                    | 4617                   | 2858            | 25982               | 16156                  |
| 43591          | 0.2         | 99.9            | 0.2        | 99.9               | 0.0049               | 8547            | 5935                    | 4989                   | 3088            | 28073               | 1/456                  |
| 4/291<br>51172 | 0.1         | 100.0           | 0.1        | 100.0              | 0.0045               | 92/3            | 044U<br>6968            | 5856                   | 3625            | 20422               | 18941<br>20404         |
| 55387          | 0.0         | 100.0           | 0.0        | 100.0              | 0.0041               | 10034           | 7542                    | 6339                   | 3023            | 32933               | 20494                  |
| 22201          | 0.0         | 100.0           | 0.0        | 100.0              | 0.0035               | 11741           | 8153                    | 6853                   | 4242            | 38564               | 22102                  |



(B) Capillary Pressure Plot



ACS LABORATORIES

#### Well Sample Depth

Fortescue-3 2411.50 m



| Client          | Geoscience Victoria               |                              |                    |              |                  |                         | Conversio    | n Parameters |                   |                   |  |  |  |  |  |
|-----------------|-----------------------------------|------------------------------|--------------------|--------------|------------------|-------------------------|--------------|--------------|-------------------|-------------------|--|--|--|--|--|
| Well            | Fortescue-3                       |                              |                    |              |                  |                         | Conversio    | air/water    | air/oil           | oil/water         |  |  |  |  |  |
|                 |                                   |                              |                    |              | Laboratory Theta |                         |              | 0.0          | 0.0               | 30.0              |  |  |  |  |  |
| Test Method     | Air/Mercury Capillary Pressure Dr | ainage                       |                    |              | Laboratory IFT   |                         |              | 72.0         | 24.0              | 48.0              |  |  |  |  |  |
|                 |                                   |                              |                    |              | Reservoir Theta  |                         |              | 0.0          |                   | 30.0              |  |  |  |  |  |
| Sample          | Fortescue-3                       | Ambient Permeal              | bility             |              | Reservoir IFT    | The star                |              | 50.0         | 24.0              | 30.0              |  |  |  |  |  |
| Deptn           | 2411.30 III                       | Ambient Porosity             |                    |              | Reservoir TcosT  | neta                    |              | 50.0         | 24.0              | 42.0              |  |  |  |  |  |
| pore radius (um | 2                                 |                              |                    |              | D                | ensity Gradients, psi/f | oot          | 50.0         |                   | 20.0              |  |  |  |  |  |
| 0.030           | Entry Pressure (psia)             | Displacement Pressure (psia) | Threshold Pressure | e (psia)     |                  |                         | Typical      | 1            |                   |                   |  |  |  |  |  |
| System          | Lab Resv                          | Lab Resv                     | Lab                | Resv         | Water:           |                         | 0.440        | T            |                   |                   |  |  |  |  |  |
| A-Hg            | 3577 -                            | 4404 -                       | 5634               | -            | Oil:             |                         | 0.330        |              |                   |                   |  |  |  |  |  |
| G-W             | 701.8 487.4                       | 864.0 600.0                  | 1105.3             | 767.6        | Gas:             |                         | 0.100        | 1            |                   |                   |  |  |  |  |  |
| 0-11            | 233.7 233.4                       | 200.0 512.0                  | 508.4              | 339.1        | 1                |                         |              |              |                   |                   |  |  |  |  |  |
|                 |                                   |                              |                    |              |                  |                         |              |              |                   |                   |  |  |  |  |  |
|                 |                                   |                              |                    | Pore         | Equivalent       | Injection Pressures     |              |              | Height Above Free | Height Above Free |  |  |  |  |  |
| Pressure        | Intrusion                         | Saturation                   |                    | Diameter     | A/B Lab          | A/B Res                 | O/B Lab      | O/B Res      | Water (feet)      | Water (feet)      |  |  |  |  |  |
| (psia)          | (percent)                         | (percent)                    |                    | (µm)         |                  |                         |              |              | Oil-Water         | Gas-Water         |  |  |  |  |  |
|                 |                                   |                              |                    |              |                  |                         |              |              |                   |                   |  |  |  |  |  |
| 1.01            | 0.0                               | 0.0                          |                    | 210          | 0.86             | 0.60                    | 0.50         | 0.31         | 2.82              | 1.75              |  |  |  |  |  |
| 1.99            | 0.0                               | 0.0                          |                    | 107          | 1.02             | 0.71                    | 0.59         | 0.37         | 3.34              | 2.07              |  |  |  |  |  |
| 2.74            | 0.0                               | 0.0                          |                    | 77.5         | 1.17             | 0.81                    | 0.68         | 0.42         | 3.85              | 2.39              |  |  |  |  |  |
| 3.19            | 0.0                               | 0.0                          |                    | 66.5         | 1.37             | 0.95                    | 0.80         | 0.49         | 4.50              | 2.80              |  |  |  |  |  |
| 4 38            | 0.0                               | 0.0                          |                    | 36.7<br>48.4 | 1.62             | 1.15                    | 0.93         | 0.39         | 6.43              | 5.52<br>4.00      |  |  |  |  |  |
| 5.18            | 0.0                               | 0.0                          |                    | 40.9         | 2.25             | 1.57                    | 1.32         | 0.81         | 7.41              | 4.61              |  |  |  |  |  |
| 5.98            | 0.0                               | 0.0                          |                    | 35.4         | 2.6              | 1.84                    | 1.54         | 0.96         | 8.69              | 5.41              |  |  |  |  |  |
| 6.98            | 0.0                               | 0.0                          |                    | 30.4         | 3.0              | 2.11                    | 1.77         | 1.10         | 9.98              | 6.21              |  |  |  |  |  |
| 8.28            | 0.0                               | 0.0                          |                    | 25.6         | 3.6              | 2.52                    | 2.12         | 1.31         | 11.91             | 7.41              |  |  |  |  |  |
| 9.98            | 0.0                               | 0.0                          |                    | 21.2         | 4.2              | 2.9                     | 2.47         | 1.53         | 13.91             | 8.65              |  |  |  |  |  |
| 13.5            | 0.0                               | 0.0                          |                    | 15.7         | 5.9              | 4.1                     | 3.4          | 2.13         | 19.32             | 12.01             |  |  |  |  |  |
| 15.5            | 0.0                               | 0.0                          |                    | 13.7         | 7.4              | 5.2                     | 4.3          | 2.69         | 24.41             | 15.18             |  |  |  |  |  |
| 18.5            | 0.0                               | 0.0                          |                    | 11.5         | 9.4              | 6.5                     | 5.5          | 3.4          | 30.98             | 19.26             |  |  |  |  |  |
| 21.6            | 0.0                               | 0.0                          |                    | 9.83         | 11.1             | 7.7                     | 6.5          | 4.0          | 36.45             | 22.67             |  |  |  |  |  |
| 25.3            | 0.0                               | 0.0                          |                    | 8.39         | 13.2             | 9.2                     | 7.7          | 4.8          | 43.47             | 27.03             |  |  |  |  |  |
| 37.9            | 0.0                               | 0.0                          |                    | 5.59         | 13.4             | 10.7                    | 9.0          | 5.6          | 50.49             | 36.84             |  |  |  |  |  |
| 48.1            | 0.0                               | 0.0                          |                    | 4.41         | 21.6             | 15.0                    | 12.6         | 7.8          | 70.84             | 44.05             |  |  |  |  |  |
| 56.6            | 0.0                               | 0.0                          |                    | 3.75         | 25.1             | 17.4                    | 14.6         | 9.1          | 82.44             | 51.26             |  |  |  |  |  |
| 67.5            | 0.0                               | 0.0                          |                    | 3.14         | 30               | 20.8                    | 17.5         | 10.8         | 98.54             | 61.27             |  |  |  |  |  |
| 78.4            | 0.0                               | 0.0                          |                    | 2.70         | 35               | 24.6                    | 20.7         | 12.8         | 116.57            | 72.49             |  |  |  |  |  |
| 92.0            | 0.0                               | 0.0                          |                    | 2.30         | 41               | 29                      | 24.0         | 14.9         | 135.25            | 84.10<br>98.52    |  |  |  |  |  |
| 128             | 0.0                               | 0.0                          |                    | 1.65         | 48               | 39                      | 33           | 20.5         | 186.13            | 115.74            |  |  |  |  |  |
| 153             | 0.0                               | 0.0                          |                    | 1.38         | 67               | 47                      | 39           | 24.4         | 221.55            | 137.77            |  |  |  |  |  |
| 181             | 0.0                               | 0.0                          |                    | 1.17         | 79               | 55                      | 46           | 29           | 260.19            | 161.80            |  |  |  |  |  |
| 210             | 0.0                               | 0.0                          |                    | 1.01         | 93               | 64                      | 54           | 33           | 304.0             | 189.03            |  |  |  |  |  |
| 246             | 0.0                               | 0.0                          |                    | 0.862        | 109              | /6                      | 64<br>74     | 39           | 358.1             | 222.67            |  |  |  |  |  |
| 344             | 0.0                               | 0.0                          |                    | 0.617        | 149              | 103                     | 87           | 54           | 488.2             | 303.6             |  |  |  |  |  |
| 404             | 0.0                               | 0.0                          |                    | 0.525        | 174              | 121                     | 102          | 63           | 571.9             | 355.6             |  |  |  |  |  |
| 472             | 0.0                               | 0.0                          |                    | 0.450        | 205              | 143                     | 120          | 74           | 675.0             | 419.7             |  |  |  |  |  |
| 556             | 0.0                               | 0.0                          |                    | 0.381        | 241              | 167                     | 141          | 87           | 790.9             | 491.8             |  |  |  |  |  |
| 64 /<br>758     | 0.0                               | 0.0                          |                    | 0.328        | 282              | 230                     | 105          | 102          | 926.8             | 5/6.5             |  |  |  |  |  |
| 888             | 0.0                               | 0.0                          |                    | 0.239        | 358              | 249                     | 209          | 120          | 1176.0            | 731.3             |  |  |  |  |  |
| 1048            | 0.0                               | 0.0                          |                    | 0.202        | 420              | 292                     | 245          | 152          | 1378.9            | 857.4             |  |  |  |  |  |
| 1228            | 0.0                               | 0.0                          |                    | 0.173        | 492              | 341                     | 287          | 178          | 1614.6            | 1004.0            |  |  |  |  |  |
| 1439            | 0.0                               | 0.0                          |                    | 0.147        | 577              | 401                     | 337          | 208          | 1895.4            | 1178.6            |  |  |  |  |  |
| 1826            | 0.0                               | 0.0                          |                    | 0.126        | 793              | 469                     | 463          | 244 286      | 2220.0            | 1580.5            |  |  |  |  |  |
| 2141            | 0.0                               | 0.0                          |                    | 0.0990       | 928              | 644                     | 541          | 335          | 3047              | 1894.7            |  |  |  |  |  |
| 2507            | 0.0                               | 0.0                          |                    | 0.0846       | 1003             | 697                     | 586          | 363          | 3296              | 2049.3            |  |  |  |  |  |
| 2943            | 0.0                               | 0.0                          |                    | 0.0720       | 1177             | 818                     | 687          | 425          | 3867              | 2405              |  |  |  |  |  |
| 3447            | 0.0                               | 0.0                          |                    | 0.0615       | 1379             | 958                     | 805          | 498          | 4530              | 2817              |  |  |  |  |  |
| 4042            | 1.7                               | 7.2                          |                    | 0.0324       | 1348             | 1075                    | 1022         | 632          | 5749              | 3575              |  |  |  |  |  |
| 5117            | 7.0                               | 10.7                         |                    | 0.0414       | 1895             | 1316                    | 1106         | 685          | 6223              | 3870              |  |  |  |  |  |
| 6005            | 11.0                              | 21.6                         |                    | 0.0353       | 2052             | 1425                    | 1198         | 741          | 6739              | 4191              |  |  |  |  |  |
| 7034            | 14.1                              | 35.7                         |                    | 0.0301       | 2411             | 1674                    | 1407         | 871          | 7919              | 4924              |  |  |  |  |  |
| 7897            | 9.2                               | 45.0                         |                    | 0.0268       | 2813             | 1953                    | 1642         | 1016         | 9239              | 5745              |  |  |  |  |  |
| 8927            | 7.5                               | 52.5                         |                    | 0.0237       | 3214             | 2232                    | 2117         | 1310         | 10558             | 6565<br>7408      |  |  |  |  |  |
| 10464           | 4.2                               | 62.2                         |                    | 0.0203       | 4019             | 2791                    | 2345         | 1452         | 13200             | 8208              |  |  |  |  |  |
| 12296           | 7.5                               | 69.7                         |                    | 0.0172       | 4540             | 3153                    | 2650         | 1640         | 14913             | 9274              |  |  |  |  |  |
| 14346           | 4.8                               | 74.4                         |                    | 0.0148       | 4916             | 3414                    | 2869         | 1776         | 16146             | 10040             |  |  |  |  |  |
| 16393           | 5.0                               | 79.4                         |                    | 0.0129       | 5322             | 3696                    | 3106         | 1923         | 17480             | 10870             |  |  |  |  |  |
| 20495           | 2.8                               | 82.2                         |                    | 0.0115       | 6237             | 4001                    | 3503<br>3640 | 2082         | 20485             | 12738             |  |  |  |  |  |
| 23156           | 2.6                               | 87.7                         |                    | 0.0092       | 6750             | 4688                    | 3940         | 2439         | 22172             | 13788             |  |  |  |  |  |
| 25070           | 1.0                               | 88.7                         |                    | 0.0085       | 7293             | 5065                    | 4257         | 2635         | 23955             | 14896             |  |  |  |  |  |
| 27141           | 1.3                               | 89.9                         |                    | 0.0078       | 7911             | 5494                    | 4617         | 2858         | 25984             | 16158             |  |  |  |  |  |
| 29382           | 1.9                               | 91.9                         |                    | 0.0072       | 8548             | 5936                    | 4989         | 3089         | 28078             | 17460             |  |  |  |  |  |
| 34427           | 1.0                               | 92.9                         |                    | 0.0067       | 9274<br>10034    | 6968                    | 5857         | 3625         | 32959             | 20495             |  |  |  |  |  |
| 37194           | 0.6                               | 95.2                         |                    | 0.0057       | 10860            | 7541                    | 6338         | 3924         | 35670             | 22181             |  |  |  |  |  |
| 40345           | 0.6                               | 95.8                         |                    | 0.0053       | 11740            | 8153                    | 6852         | 4242         | 38561             | 23979             |  |  |  |  |  |
| 43596           | 1.2                               | 97.0                         |                    | 0.0049       | 0                | 0                       | 0            | 0            | 0                 | 0                 |  |  |  |  |  |
| 4/297           | 1.1                               | 98.1                         |                    | 0.0045       | 0                | 0                       | 0            | 0            | 0                 | 0                 |  |  |  |  |  |
| 55384           | 1.2                               | 99.5<br>99.7                 |                    | 0.0041       | 0                | 0                       | 0            | 0            | 0                 | 0                 |  |  |  |  |  |
| 50974           | 0.2                               | 100.0                        |                    | 0.0025       | 0                | õ                       | 0            | 0            | 0                 | ó                 |  |  |  |  |  |



(B) Capillary Pressure Plot



(C) Pore Size Distribution plot



#### Well **Gippsland Frome Lakes-4** Sample Depth 503.5 m Geoscience AVictoria Density Gradients (psi/foot) Client Conversion Parameters (dynes/cm) Well oil/wate CO<sub>2</sub>/wate Gippsland Frome Lakes-4 Typical r/wate air/oil Water 0 4 4 0 aboratory Theta 0.0 0.0 30.0 0.0 Air/Mercury Capillary Pressure 0.330 24.0 48.0 72.0 Test Method Oil: aboratory IFT 72.0 0.100 eservoir Theta 0.0 30.0 0.0 GFL4-1 Reservoir IFT 50.0 26.0 30.0 Sample CO2 Density 0.109 aboratory TcosTheta 72.0 24.0 42.0 72.0 Depth 503.50 m ervoir TcosTheta 50.0 26.0 26.0 Estimated Column Entry Pressure (psia) Displacemer ure (psia Threshold ure (psia) Pore radius (um) 0 743 Height (feet) Lab Res Cor Lab Resv Lah Resv A-Hg 143 185 na 166 28.1 9.36 19.5 10.1 32.6 10.9 22.6 25.2 13.1 G-W 57 36.3 o-w 11.8 12.1 92 CO<sub>2</sub>-W 26 28.1 10.1 11.8 36.3 13.1 32.6 Equivalent Injection Pressures Oil/Brine Oil/Brine Height Above Height Above Pore Air/Brine Air/Brine Reservoir Free Water Free Water Raw Data Conformance Corrected Lab Conditions Oil-Water Gas-Water Pressure Intrusion Saturation Intrusion Saturation Diameter Lab Res Con Conditions (percent) (percent) (percent) (µm) (psi) (psi) (feet) (feet) (psia) (percent) (psi) (psi) 211 0.20 0.14 0.11 0.07 0.40 0.0 0.0 0.0 0.0 0.64 1.00 0.79 1.09 1.98 0.0 0.0 0.0 0.0 107 0.39 0.27 0.23 0.14 1.28 2.73 0.0 0.0 0.0 0.0 77.6 0.54 0.37 0.31 0.19 1.75 3.18 0.0 0.0 0.0 0.0 667 0.62 0.43 0.36 0.23 2.05 1 27 0.73 1.49 3.73 0.51 0.43 0.0 0.0 0.0 56.9 0.26 2.40 0.0 4.38 5.18 0.0 0.0 48.4 41.0 0.86 1.02 0.60 0.71 0.50 0.59 2.82 3.34 1.76 2.08 0.0 0.0 0.0 0.0 0.31 0.0 0.0 0.37 5.98 0.0 0.0 0.0 0.0 0.0 35.5 1.17 0.81 0.68 0.42 3.85 2 39 6.97 30.4 1.37 0.80 0.49 4.49 0.0 0.0 0.0 0.95 2.80 8.27 0.0 0.0 0.0 0.0 25.6 1.62 1.13 0.95 0.59 5.33 3.32 9.97 21.3 1.95 1.14 0.71 0.0 0.0 0.0 0.0 1.35 6.42 3.97 11.5 13.5 0.0 0.0 0.0 0.0 18 5 2 25 1 56 1 32 0.82 7 4 3 4 59 0.0 0.0 0.0 15.7 2.65 1.84 1.54 0.95 5.41 0.0 8.66 15.5 18.5 0.0 0.0 0.0 0.0 2.11 2.52 1.77 2.12 6.21 7.41 0.0 0.0 137 3.04 1.10 10.0 0.0 0.0 11.5 3.63 11.9 1.31 21.6 25.3 0.0 0.0 0.0 0.0 9.83 4 24 2.94 2.47 1.53 13.9 8.65 0.0 0.0 0.0 4.96 3.44 1.80 10.1 0.0 8.39 2.90 16.4 30.0 0.0 0.0 0.0 0.0 7.08 5.88 4.08 3.43 2.12 19.3 12.0 37.2 0.2 0.2 0.0 5.70 7.29 5.06 4.26 2.64 24.0 14.9 0.0 47.2 56.6 0.4 0.7 0.6 1.3 6.42 7.71 18.9 22.7 0.0 0.0 4 4 9 9 25 5 40 3 34 30.4 0.7 0.7 3.75 11.1 6.48 4.01 36.5 663 1.5 2.8 1.5 2.2 3 20 13.0 9.03 7 59 4.70 42.7 26.6 80.4 4.9 4.4 2.64 11.0 9.20 5.70 51.8 32.4 2.1 2.0 2.1 15.8 93.0 6.9 2.0 6.3 2.28 18.2 12.6 10.6 6.56 59.6 37.1 111 2.9 9.8 9.2 15.1 12.7 71.5 44.4 2.9 1.91 21.8 7.86 129 3.1 12.8 3.1 123 1.65 25.3 17.6 14.8 916 833 51.8 152 4.0 16.9 4.1 1.39 29.8 20.7 17.4 10.8 98.2 60.9 16.4 179 46 21.4 46 21.01 18 35.1 24.4 20.5 12.7 115 71.8 210 6.2 27.6 28.6 24.0 14.9 135 84.1 6.2 27.2 1.01 41.2 247 8.6 36.2 8.7 35.8 0.860 48.4 33.6 28.3 17.5 159 98.8 292 10.6 46.8 10.7 46.5 0.726 57.3 39.8 33.4 20.7 24.3 188 117 343 17.7 64.5 17.8 64.3 0.619 67.3 46.7 39.3 221 137 401 19.3 83.8 19.4 0.528 54.6 45.9 28.4 258 83.7 78.6 161 472 13.7 974 13.7 974 0 4 4 9 92.5 64.2 54.0 33.4 304 189 553 97.5 0.1 75.0 39.2 221 0.1 97.5 0.383 108 63.3 356 647 0.0 97.5 0.0 97.5 0.328 127 88.2 74.0 45.8 416 259 757 97.8 97.8 148 86.6 53.6 487 303 0.3 0.3 0.280 103 887 0.2 98.0 0.2 98.0 0.239 174 121 102 63.1 574 356 1048 0.5 98.5 0.5 98.5 0.202 205 142 120 74.3 675 418 1227 02 98 7 02 98 7 0 1 7 3 241 167 140 867 788 491 1439 0.2 98.9 0.2 98.9 0.147 282 196 165 102 927 576 0.2 1688 99.1 0.2 99.1 0.126 331 230 193 119 1082 676 99.3 99.4 732 859 1828 0.1 0.2 99.3 358 249 209 1173 0.1 0.1 0.116 129 0.0990 152 2142 99.4 420 292 245 1382 2510 0.1 99.6 0.1 99.5 0.0845 492 342 287 178 1618 1006 0.0720 577 337 1179 2945 0.2 99.7 0.2 99.7 401 209 1900 3449 0.1 99.8 0.1 99.8 0.0615 676 469 395 245 2227 1379 4040 0.0 99.8 0.0 99.8 0.0525 792 550 462 286 2600 1618 927 1003 541 585 4728 0.2 100.0 0.2 100.0 0.0448 644 335 3045 1894 5114 0.0 100.0 0.0 100.0 0.0415 697 362 3291 2050 6002 0.0 100.0 0.0 100.0 0.0353 1177 817 687 425 3864 2403 1379 498 4527 7033 0.0 100.0 0.0 100.0 0.0301 958 805 2818 7895 8920 0.0 100.0 0.0 100.0 0.0269 0.0238 1548 1749 1075 1215 904 1021 560 632 5091 5745 3162 3574 0.0 0.0 100.0 100.0 683 740 9649 0.0 100.0 0.0220 1892 1314 1104 6209 3865 0.0 100.0 10452 0.0 100.0 0.0 100.0 0.0203 2049 1423 1196 6727 4185 12283 0.0 100.0 0.0 100.0 0.0173 2408 1672 1406 870 7909 4918 2810 9227 14333 1951 1015 5738 0.0 100.0 0.0 100.0 0.0148 1640 0.0 0.0 16381 100.0 0.0 100.0 0.0129 3212 2231 1875 1161 10555 6562 11900 2517 18481 100.0 0.0 100.0 3624 2115 1309 7403 0.0115 20481 23149 0.0 0.0 100.0 0.0 100.0 100.0 0.0104 0.0092 4016 4539 2789 3152 2344 1451 13191 14909 8203 9271 100.0 0.0 2649 1640 25064 0.0 100.0 0.0 100.0 0.0085 4915 3413 2868 1775 16136 10038 27135 0.0 100.0 0.0 100.0 0.0078 5321 3695 3105 1922 17473 10868 29376 0.0 100.0 0.0 100.0 0.0072 5760 4000 3362 2081 18918 11765 6236 2253 0.0067 4331 20482 12738 31804 0.0 100.0 0.0 100.0 3640 34421 0.0 100.0 0.0 100.0 0.0062 6749 4687 3939 2438 22164 13785 0.0 37192 100.0 0.0 100.0 0.0057 7293 5065 4256 2635 23955 14897 0.0 0.0 7910 8547 40343 100.0 0.0 100.0 0.0053 5493 4617 2858 25982 16156 43591 0.0049 5935 4989 17456 100.0 100.0 28073 0.0 3088 47291 0.0 100.0 0.0 100.0 0.0045 9273 6440 5412 3350 30455 18941

51172

55387 59880

0.0

0.0

0.0

100.0 100.0 100.0 (A) Interpreted Capillary Pressure Chart

100.0

100.0

100.0

0.0

0.0

0.0

0.0041

0.0038

0.0035

10034

10860

11741

6968

7542

8153

3625

3924

4242

5856

6339

6853

32955

35673

38564

20494

22182

23979







(C) Pore Size Distribution plot

| Well<br>Sample | Depth                        |                 | C<br>5    | Sippsland<br>106.6 m    | l Frome Lake        | es-4                             |                          |                  |                |             |                        |
|----------------|------------------------------|-----------------|-----------|-------------------------|---------------------|----------------------------------|--------------------------|------------------|----------------|-------------|------------------------|
| Client         | Geoscience /                 | Victoria        |           | Density (               | radients (nsi/foot) | 1                                | Con                      | version Paramete | ers (dynes/cm) |             |                        |
| Well           | Geoscience /<br>Gippsland Fi | ome Lakes-4     |           | Density C               | Typical             |                                  | Con                      | air/water        | air/oil        | oil/water   | CO <sub>2</sub> /water |
|                |                              |                 |           | Water:                  | 0.440               | Laboratory Thet                  | a                        | 0.0              | 0.0            | 30.0        | 0.0                    |
| Test Method    | Air/Mercury                  | Capillary Press | ure       | Oil:                    | 0.330               | Laboratory IFT                   |                          | 72.0             | 24.0           | 48.0        | 72.0                   |
| Sample         | GFI 4-2                      |                 |           | Gas:                    | 0.100               | Reservoir Theta<br>Reservoir IFT |                          | 0.0<br>50.0      |                | 30.0        | 0.0<br>26.0            |
| Depth          | 506.60 m                     |                 |           | CO <sub>2</sub> Density | 0.110               | Laboratory Tcos                  | Theta                    | 72.0             | 24.0           | 42.0        | 72.0                   |
|                |                              |                 |           |                         |                     | Reservoir Tcos                   | Theta                    | 50.0             |                | 26.0        | 26.0                   |
|                |                              |                 |           |                         | Estimated Column    | Entry F                          | ressure (psia)           | Displacement P   | ressure (psia) | Threshold P | ressure (psia)         |
| Pore radius (µ | .m)                          | 0.139           |           | System<br>A-Hg          | Height (feet)       | Lab<br>766                       | Res Con                  | Lab<br>1120      | Resv           | Lab<br>1228 | Resv                   |
|                |                              |                 |           | G-W                     | 307                 | 150                              | 104                      | 220              | 153            | 241         | 167                    |
|                |                              |                 |           | O-W                     | 493                 | 50.1                             | 54.3                     | 73.3             | 79.4           | 80.3        | 87.0                   |
|                |                              |                 |           | CO <sub>2</sub> -W      | 141                 | 150                              | 54.3                     | 220              | 79.4           | 241         | 87.0                   |
|                |                              |                 |           |                         |                     | Eminator                         | Initiation Decomposition | O:1/D=i==        | O:1/D=i==      | II          | II.i.b. Ab             |
|                | Raw                          | Data            | Conforma  | ance Corrected          | Pore                | Air/Brine                        | Air/Brine                | Lab              | Reservoir      | Free Water  | Free Water             |
| Pressure       | Intrusion                    | Saturation      | Intrusion | Saturation              | Diameter            | Lab                              | Res Con                  | Conditions       | Conditions     | Oil-Water   | Gas-Water              |
| (psia)         | (percent)                    | (percent)       | (percent) | (percent)               | (µm)                | (psi)                            | (psi)                    | (psi)            | (psi)          | (feet)      | (feet)                 |
|                |                              |                 |           |                         |                     |                                  |                          |                  |                |             |                        |
| 1.00           | 0.0                          | 0.0             | 0.0       | 0.0                     | 211                 | 0.20                             | 0.14                     | 0.11             | 0.07           | 0.64        | 0.40                   |
| 1.98           | 0.7                          | 0.7             | 0.0       | 0.0                     | 107                 | 0.39                             | 0.27                     | 0.23             | 0.14           | 1.28        | 0.79                   |
| 2.73           | 0.3                          | 1.0             | 0.0       | 0.0                     | 77.6                | 0.54                             | 0.37                     | 0.31             | 0.19           | 1.75        | 1.09                   |
| 3.18           | 0.1                          | 1.1             | 0.0       | 0.0                     | 66.7                | 0.62                             | 0.43                     | 0.36             | 0.23           | 2.05        | 1.27                   |
| 5.73<br>4 38   | 0.1                          | 1.2             | 0.0       | 0.0                     | 48.4                | 0.73                             | 0.51                     | 0.45             | 0.20           | 2.40        | 1.49                   |
| 5.18           | 0.1                          | 1.6             | 0.0       | 0.0                     | 41.0                | 1.02                             | 0.71                     | 0.59             | 0.37           | 3.34        | 2.08                   |
| 5.98           | 0.1                          | 1.7             | 0.0       | 0.0                     | 35.5                | 1.17                             | 0.81                     | 0.68             | 0.42           | 3.85        | 2.39                   |
| 6.97           | 0.1                          | 1.9             | 0.0       | 0.0                     | 30.4                | 1.37                             | 0.95                     | 0.80             | 0.49           | 4.49        | 2.80                   |
| 8.27           | 0.1                          | 2.0             | 0.0       | 0.0                     | 25.6                | 1.62                             | 1.13                     | 0.95             | 0.59           | 5.33        | 3.32                   |
| 11.5           | 0.1                          | 2.1             | 0.0       | 0.0                     | 18.5                | 2.25                             | 1.55                     | 1.14             | 0.71           | 7.43        | 4.59                   |
| 13.5           | 0.2                          | 2.4             | 0.0       | 0.0                     | 15.7                | 2.65                             | 1.84                     | 1.54             | 0.95           | 8.66        | 5.41                   |
| 15.5           | 0.1                          | 2.5             | 0.0       | 0.0                     | 13.7                | 3.04                             | 2.11                     | 1.77             | 1.10           | 10.0        | 6.21                   |
| 18.5           | 0.1                          | 2.6             | 0.0       | 0.0                     | 11.5                | 3.63                             | 2.52                     | 2.12             | 1.31           | 11.9        | 7.41                   |
| 21.6           | 0.1                          | 2.7             | 0.0       | 0.0                     | 9.85                | 4.24                             | 3 44                     | 2.47             | 1.55           | 15.9        | 8.65<br>10.1           |
| 30.0           | 0.1                          | 3.0             | 0.0       | 0.0                     | 7.08                | 5.88                             | 4.08                     | 3.43             | 2.12           | 19.3        | 12.0                   |
| 37.2           | 0.0                          | 3.1             | 0.0       | 0.0                     | 5.70                | 7.29                             | 5.06                     | 4.26             | 2.64           | 24.0        | 14.9                   |
| 47.2           | 0.1                          | 3.2             | 0.0       | 0.0                     | 4.49                | 9.25                             | 6.42                     | 5.40             | 3.34           | 30.4        | 18.9                   |
| 56.6           | 0.1                          | 3.2             | 0.1       | 0.1                     | 3.75                | 11.1                             | 7.71                     | 6.48             | 4.01           | 36.5        | 22.7                   |
| 80.4           | 0.2                          | 3.5             | 0.2       | 0.4                     | 2.64                | 15.8                             | 11.0                     | 9.20             | 5.70           | 51.8        | 32.4                   |
| 93.0           | 0.2                          | 3.7             | 0.2       | 0.5                     | 2.28                | 18.2                             | 12.6                     | 10.6             | 6.56           | 59.6        | 37.1                   |
| 111            | 0.2                          | 3.9             | 0.2       | 0.7                     | 1.91                | 21.8                             | 15.1                     | 12.7             | 7.86           | 71.5        | 44.4                   |
| 129            | 0.2                          | 4.1             | 0.2       | 0.9                     | 1.65                | 25.3                             | 17.6                     | 14.8             | 9.16           | 83.3        | 51.8                   |
| 132            | 0.2                          | 4.5             | 0.2       | 1.2                     | 1.59                | 29.8                             | 20.7                     | 20.5             | 10.8           | 98.2        | 60.9<br>71.8           |
| 210            | 0.3                          | 4.8             | 0.3       | 1.7                     | 1.01                | 41.2                             | 28.6                     | 24.0             | 14.9           | 135         | 84.1                   |
| 247            | 0.3                          | 5.1             | 0.3       | 2.0                     | 0.860               | 48.4                             | 33.6                     | 28.3             | 17.5           | 159         | 98.8                   |
| 292            | 0.3                          | 5.4             | 0.3       | 2.3                     | 0.726               | 57.3                             | 39.8                     | 33.4             | 20.7           | 188         | 117                    |
| 343<br>401     | 0.4                          | 5.9             | 0.4       | 2.8                     | 0.619               | 67.3<br>78.6                     | 46.7                     | 39.3             | 24.3           | 221         | 137                    |
| 472            | 0.7                          | 7.1             | 0.7       | 4.1                     | 0.449               | 92.5                             | 64.2                     | 54.0             | 33.4           | 304         | 189                    |
| 553            | 0.8                          | 7.9             | 0.9       | 4.9                     | 0.383               | 108                              | 75.0                     | 63.3             | 39.2           | 356         | 221                    |
| 647            | 1.1                          | 9.1             | 1.2       | 6.1                     | 0.328               | 127                              | 88.2                     | 74.0             | 45.8           | 416         | 259                    |
| /5/            | 1.6                          | 10.6            | 1.6       | 7.7                     | 0.280               | 148                              | 103                      | 86.6             | 53.6           | 487         | 303                    |
| 1048           | 3.8                          | 16.8            | 3.9       | 14.1                    | 0.202               | 205                              | 142                      | 120              | 74.3           | 675         | 418                    |
| 1227           | 5.4                          | 22.1            | 5.5       | 19.6                    | 0.173               | 241                              | 167                      | 140              | 86.7           | 788         | 491                    |
| 1439           | 9.6                          | 31.7            | 9.9       | 29.5                    | 0.147               | 282                              | 196                      | 165              | 102            | 927         | 576                    |
| 1688           | 12.5                         | 44.2            | 12.9      | 42.3                    | 0.126               | 331                              | 230                      | 193              | 119            | 1082        | 6/6                    |
| 2142           | 17.3                         | 71.3            | 17.9      | 70.4                    | 0.0990              | 420                              | 292                      | 245              | 152            | 1382        | 859                    |
| 2510           | 17.7                         | 89.0            | 18.3      | 88.6                    | 0.0845              | 492                              | 342                      | 287              | 178            | 1618        | 1006                   |
| 2945           | 10.9                         | 99.9            | 11.3      | 99.9                    | 0.0720              | 577                              | 401                      | 337              | 209            | 1900        | 1179                   |
| 3449           | 0.0                          | 100.0           | 0.0       | 100.0                   | 0.0615              | 676<br>702                       | 469                      | 395              | 245<br>286     | 2227        | 1379                   |
| 4728           | 0.0                          | 100.0           | 0.0       | 100.0                   | 0.0448              | 927                              | 644                      | 541              | 335            | 3045        | 1894                   |
| 5114           | 0.0                          | 100.0           | 0.0       | 100.0                   | 0.0415              | 1003                             | 697                      | 585              | 362            | 3291        | 2050                   |
| 6002           | 0.0                          | 100.0           | 0.0       | 100.0                   | 0.0353              | 1177                             | 817                      | 687              | 425            | 3864        | 2403                   |
| 7033           | 0.0                          | 100.0           | 0.0       | 100.0                   | 0.0301              | 1379                             | 958                      | 805              | 498            | 4527        | 2818                   |
| 8920           | 0.0                          | 100.0           | 0.0       | 100.0                   | 0.0238              | 1749                             | 1215                     | 1021             | 632            | 5745        | 3574                   |
| 9649           | 0.0                          | 100.0           | 0.0       | 100.0                   | 0.0220              | 1892                             | 1314                     | 1104             | 683            | 6209        | 3865                   |
| 10452          | 0.0                          | 100.0           | 0.0       | 100.0                   | 0.0203              | 2049                             | 1423                     | 1196             | 740            | 6727        | 4185                   |
| 12283          | 0.0                          | 100.0           | 0.0       | 100.0                   | 0.0173              | 2408                             | 1672                     | 1406             | 870            | 7909        | 4918                   |
| 14555          | 0.0                          | 100.0           | 0.0       | 100.0                   | 0.0148              | 2810                             | 2231                     | 1640             | 1015           | 9227        | 5758<br>6562           |
| 18481          | 0.0                          | 100.0           | 0.0       | 100.0                   | 0.0115              | 3624                             | 2517                     | 2115             | 1309           | 11900       | 7403                   |
| 20481          | 0.0                          | 100.0           | 0.0       | 100.0                   | 0.0104              | 4016                             | 2789                     | 2344             | 1451           | 13191       | 8203                   |
| 23149          | 0.0                          | 100.0           | 0.0       | 100.0                   | 0.0092              | 4539                             | 3152                     | 2649             | 1640           | 14909       | 9271                   |
| 25064          | 0.0                          | 100.0           | 0.0       | 100.0                   | 0.0085              | 4915                             | 3413                     | 2868             | 1775           | 16136       | 10038                  |
| 2/135<br>29376 | 0.0                          | 100.0           | 0.0       | 100.0                   | 0.0078              | 5321<br>5760                     | 3095                     | 3105             | 1922<br>2081   | 1/4/3       | 10868                  |
| 31804          | 0.0                          | 100.0           | 0.0       | 100.0                   | 0.0067              | 6236                             | 4331                     | 3640             | 2253           | 20482       | 12738                  |
| 34421          | 0.0                          | 100.0           | 0.0       | 100.0                   | 0.0062              | 6749                             | 4687                     | 3939             | 2438           | 22164       | 13785                  |
| 37192          | 0.0                          | 100.0           | 0.0       | 100.0                   | 0.0057              | 7293                             | 5065                     | 4256             | 2635           | 23955       | 14897                  |
| 40343          | 0.0                          | 100.0           | 0.0       | 100.0                   | 0.0053              | 7910                             | 5493                     | 4617             | 2858           | 25982       | 16156                  |
| 43591<br>47291 | 0.0                          | 100.0           | 0.0       | 100.0                   | 0.0049              | 804/<br>9273                     | 5935<br>6440             | 4989             | 3088           | 28073       | 1/450                  |
| 51172          | 0.0                          | 100.0           | 0.0       | 100.0                   | 0.0041              | 10034                            | 6968                     | 5856             | 3625           | 32955       | 20494                  |
| 55387          | 0.0                          | 100.0           | 0.0       | 100.0                   | 0.0038              | 10860                            | 7542                     | 6339             | 3924           | 35673       | 22182                  |
| 59880          | 0.0                          | 100.0           | 0.0       | 100.0                   | 0.0035              | 11741                            | 8153                     | 6853             | 4242           | 38564       | 23979                  |

## Gippsland Frome Lakes-4





(B) Capillary Pressure Plot



(C) Pore Size Distribution plot

#### Well Sample Depth

Golden Beach West-1 667.68 m



| Client           | Geoscience Victoria                     |                     |                         |                  |                          | Conversio | n Parameters |                   |                    |  |  |  |  |  |  |
|------------------|-----------------------------------------|---------------------|-------------------------|------------------|--------------------------|-----------|--------------|-------------------|--------------------|--|--|--|--|--|--|
| Well             | Golden Beach West-1                     |                     |                         |                  |                          |           | air/water    | air/oil           | oil/water          |  |  |  |  |  |  |
|                  |                                         |                     |                         | Laboratory Theta |                          |           | 0.0          | 0.0               | 30.0               |  |  |  |  |  |  |
| Test Method      | Air/Mercury Capillary Pressure Drainage |                     |                         | Laboratory IFT   |                          |           | 72.0         | 24.0              | 48.0               |  |  |  |  |  |  |
| с I              |                                         |                     |                         | Reservoir Theta  |                          |           | 0.0          |                   | 30.0               |  |  |  |  |  |  |
| Sample           | Golden Beach West-1                     | Ambient Permeabil   | ity                     | Laboratory Tcos  | Thata                    |           | 50.0         | 24.0              | 30.0               |  |  |  |  |  |  |
| Deptin           | 007.00                                  | Ambient Forosity    |                         | Reservoir TcosT  | reta                     |           | 50.0         | 24.0              | 26.0               |  |  |  |  |  |  |
| pore radius (µm) |                                         |                     |                         | E                | ensity Gradients, psi/fe | oot       |              |                   |                    |  |  |  |  |  |  |
| 0.585            | Entry Pressure (psia) Displacement      | Pressure (psia) The | reshold Pressure (psia) |                  |                          | Typical   |              |                   |                    |  |  |  |  |  |  |
| System           | Lab Resv Lab                            | Resv                | Lab Resv                | Water:           |                          | 0.440     |              |                   |                    |  |  |  |  |  |  |
| A-Hg             | 181.9 - 849.1                           | -                   | 1138 -                  | Oil:             |                          | 0.330     |              |                   |                    |  |  |  |  |  |  |
| G-W              | 35.7 24.8 166.6                         | 115.7               | 223.3 155.0             | Gas:             |                          | 0.100     | ]            |                   |                    |  |  |  |  |  |  |
| 0-w              | 11.7 12.7 55.5                          | 00.2                | /4.4 80.0               | 1                |                          |           |              |                   |                    |  |  |  |  |  |  |
|                  |                                         |                     | Dama                    | Envirolant       | Initation Decouver       |           |              | Haisht Abaus Fasa | Hainht Abassa Fran |  |  |  |  |  |  |
| Proceuro         | Intrusion                               | Saturation          | Diameter                | A/B Lab          | A/B Res                  | O/B Lab   | O/B Res      | Water (feet)      | Water (feet)       |  |  |  |  |  |  |
| (psia)           | (percent)                               | (percent)           | (µm)                    | A D Lao          | ADRes                    | O/D Lab   | 0/15 1463    | Oil-Water         | Gas-Water          |  |  |  |  |  |  |
| 4                | <i>a</i> · · · <i>y</i>                 | 4                   | 4. 7                    |                  |                          |           |              |                   |                    |  |  |  |  |  |  |
|                  |                                         |                     |                         |                  |                          |           |              |                   |                    |  |  |  |  |  |  |
| 1.01             | 0.0                                     | 0.0                 | 211                     | 0.20             | 0.14                     | 0.12      | 0.07         | 0.65              | 0.40               |  |  |  |  |  |  |
| 1.98             | 0.0                                     | 0.0                 | 107                     | 0.39             | 0.27                     | 0.23      | 0.14         | 1.28              | 0.79               |  |  |  |  |  |  |
| 3.18             | 0.0                                     | 0.0                 | 66.7                    | 0.62             | 0.43                     | 0.31      | 0.13         | 2.05              | 1.09               |  |  |  |  |  |  |
| 3.73             | 0.0                                     | 0.0                 | 56.8                    | 0.73             | 0.51                     | 0.43      | 0.26         | 2.40              | 1.49               |  |  |  |  |  |  |
| 4.38             | 0.0                                     | 0.0                 | 48.4                    | 0.86             | 0.60                     | 0.50      | 0.31         | 2.82              | 1.75               |  |  |  |  |  |  |
| 5.18             | 0.0                                     | 0.0                 | 40.9                    | 1.02             | 0.71                     | 0.59      | 0.37         | 3.34              | 2.07               |  |  |  |  |  |  |
| 5.98             | 0.0                                     | 0.0                 | 35.5                    | 1.2              | 0.81                     | 0.68      | 0.42         | 3.85              | 2.39               |  |  |  |  |  |  |
| 6.97             | 0.0                                     | 0.0                 | 30.4                    | 1.4              | 0.95                     | 0.80      | 0.49         | 4.49              | 2.79               |  |  |  |  |  |  |
| 9.97             | 0.0                                     | 0.0                 | 21.3                    | 2.0              | 1.13                     | 1 14      | 0.39         | 6.42              | 3.99               |  |  |  |  |  |  |
| 11.5             | 0.0                                     | 0.0                 | 18.5                    | 2.3              | 1.6                      | 1.3       | 0.81         | 7.41              | 4.61               |  |  |  |  |  |  |
| 13.5             | 0.0                                     | 0.0                 | 15.7                    | 2.6              | 1.8                      | 1.5       | 0.96         | 8.69              | 5.41               |  |  |  |  |  |  |
| 15.5             | 0.0                                     | 0.0                 | 13.7                    | 3.0              | 2.1                      | 1.8       | 1.10         | 9.98              | 6.21               |  |  |  |  |  |  |
| 18.5             | 0.0                                     | 0.0                 | 11.5                    | 3.6              | 2.5                      | 2.1       | 1.3          | 11.91             | 7.41               |  |  |  |  |  |  |
| 21.6             | 0.0                                     | 0.0                 | 9.83                    | 4.2              | 2.9                      | 2.5       | 1.5          | 13.91             | 8.65               |  |  |  |  |  |  |
| 30.0             | 0.0                                     | 0.0                 | 7.08                    | 5.9              | 41                       | 3.4       | 2.1          | 19.32             | 12.01              |  |  |  |  |  |  |
| 38.7             | 0.0                                     | 0.0                 | 5.48                    | 7.6              | 5.3                      | 4.4       | 2.7          | 24.92             | 15.50              |  |  |  |  |  |  |
| 49.8             | 0.0                                     | 0.0                 | 4.26                    | 9.8              | 6.8                      | 5.7       | 3.5          | 32.07             | 19.94              |  |  |  |  |  |  |
| 56.9             | 0.0                                     | 0.0                 | 3.73                    | 11.2             | 7.7                      | 6.5       | 4.0          | 36.65             | 22.79              |  |  |  |  |  |  |
| 68.7             | 0.0                                     | 0.0                 | 3.09                    | 13               | 9.4                      | 7.9       | 4.9          | 44.25             | 27.51              |  |  |  |  |  |  |
| 81.7             | 0.0                                     | 0.0                 | 2.59                    | 16               | 11.1                     | 9.5       | 5.8          | 52.62             | 32.72              |  |  |  |  |  |  |
| 111              | 0.0                                     | 0.0                 | 1.90                    | 22               | 15                       | 13        | 7.9          | 71.49             | 44.45              |  |  |  |  |  |  |
| 131              | 0.0                                     | 0.0                 | 1.62                    | 26               | 18                       | 15        | 9.3          | 84.37             | 52.46              |  |  |  |  |  |  |
| 153              | 0.0                                     | 0.0                 | 1.39                    | 30               | 21                       | 18        | 10.8         | 98.54             | 61.27              |  |  |  |  |  |  |
| 182              | 0.0                                     | 0.0                 | 1.17                    | 36               | 25                       | 21        | 13           | 117.22            | 72.89              |  |  |  |  |  |  |
| 213              | 1.0                                     | 1.0                 | 0.994                   | 42               | 29                       | 24        | 15           | 137.2             | 85.30              |  |  |  |  |  |  |
| 249              | 1.1                                     | 3.8                 | 0.832                   | 49               | 54<br>40                 | 28        | 21           | 188.7             | 99.72              |  |  |  |  |  |  |
| 345              | 1.6                                     | 5.4                 | 0.614                   | 68               | 40                       | 39        | 24           | 222.2             | 138.2              |  |  |  |  |  |  |
| 404              | 2.6                                     | 8.0                 | 0.524                   | 79               | 55                       | 46        | 29           | 260.2             | 161.8              |  |  |  |  |  |  |
| 474              | 2.3                                     | 10.3                | 0.448                   | 93               | 65                       | 54        | 34           | 305.3             | 189.8              |  |  |  |  |  |  |
| 555              | 2.8                                     | 13.1                | 0.382                   | 109              | 76                       | 64        | 39           | 357.4             | 222.3              |  |  |  |  |  |  |
| 648              | 3.1                                     | 10.2                | 0.327                   | 127              | 88                       | /4        | 40           | 417.3             | 259.5              |  |  |  |  |  |  |
| 890              | 3.7                                     | 23.0                | 0.238                   | 175              | 121                      | 102       | 63           | 573.2             | 356.4              |  |  |  |  |  |  |
| 1049             | 4.5                                     | 27.5                | 0.202                   | 206              | 143                      | 120       | 74           | 675.6             | 420.1              |  |  |  |  |  |  |
| 1228             | 5.5                                     | 33.1                | 0.173                   | 241              | 167                      | 141       | 87           | 790.9             | 491.8              |  |  |  |  |  |  |
| 1437             | 9.2                                     | 42.3                | 0.148                   | 282              | 196                      | 164       | 102          | 925.5             | 575.5              |  |  |  |  |  |  |
| 1689             | 17.8                                    | 60.1<br>77.1        | 0.126                   | 351              | 230                      | 200       | 120          | 1087.8            | 732.0              |  |  |  |  |  |  |
| 2144             | 12.9                                    | 90.0                | 0.0989                  | 420              | 292                      | 245       | 150          | 1381              | 858.6              |  |  |  |  |  |  |
| 2508             | 5.2                                     | 95.2                | 0.0845                  | 492              | 342                      | 287       | 178          | 1615              | 1004.4             |  |  |  |  |  |  |
| 2940             | 2.5                                     | 97.7                | 0.0721                  | 576              | 400                      | 336       | 208          | 1893              | 1177               |  |  |  |  |  |  |
| 3449             | 1.3                                     | 99.0                | 0.0615                  | 676              | 470                      | 395       | 244          | 2221              | 1381               |  |  |  |  |  |  |
| 4044             | 0.5                                     | 99.5                | 0.0524                  | /93              | 551                      | 463       | 286          | 2605              | 1620               |  |  |  |  |  |  |
| 5102             | 0.1                                     | 100.0               | 0.0415                  | 1000             | 695                      | 584       | 361          | 3286              | 2043               |  |  |  |  |  |  |
| 5993             | 0.0                                     | 100.0               | 0.0354                  | 1175             | 816                      | 686       | 425          | 3860              | 2400               |  |  |  |  |  |  |
| 7020             | 0.0                                     | 100.0               | 0.0302                  | 1376             | 956                      | 803       | 497          | 4521              | 2811               |  |  |  |  |  |  |
| 7884             | 0.0                                     | 100.0               | 0.0269                  | 1546             | 1074                     | 902       | 559          | 5078              | 3157               |  |  |  |  |  |  |
| 8914             | 0.0                                     | 100.0               | 0.0238                  | 1/48             | 1214                     | 1020      | 632          | 5/41              | 35/0               |  |  |  |  |  |  |
| 10448            | 0.0                                     | 100.0               | 0.0220                  | 2049             | 1423                     | 1196      | 740          | 6729              | 4184               |  |  |  |  |  |  |
| 12283            | 0.0                                     | 100.0               | 0.0173                  | 2408             | 1673                     | 1406      | 870          | 7911              | 4919               |  |  |  |  |  |  |
| 14329            | 0.0                                     | 100.0               | 0.0148                  | 2810             | 1951                     | 1640      | 1015         | 9228              | 5739               |  |  |  |  |  |  |
| 16379            | 0.0                                     | 100.0               | 0.0129                  | 3212             | 2230                     | 1874      | 1160         | 10549             | 6560               |  |  |  |  |  |  |
| 18478            | 0.0                                     | 100.0               | 0.0115                  | 3623             | 2516                     | 2115      | 1309         | 11901             | 7400               |  |  |  |  |  |  |
| 20480            | 0.0                                     | 100.0               | 0.0104                  | 4016             | 2/89                     | 2344      | 1451         | 13190             | 8202               |  |  |  |  |  |  |
| 25065            | 0.0                                     | 100.0               | 0.0092                  | 4015             | 3413                     | 2868      | 1776         | 16143             | 10038              |  |  |  |  |  |  |
| 27136            | 0.0                                     | 100.0               | 0.0078                  | 5321             | 3695                     | 3105      | 1922         | 17477             | 10868              |  |  |  |  |  |  |
| 29376            | 0.0                                     | 100.0               | 0.0072                  | 5760             | 4000                     | 3362      | 2081         | 18919             | 11765              |  |  |  |  |  |  |
| 31801            | 0.0                                     | 100.0               | 0.0067                  | 6235             | 4330                     | 3639      | 2253         | 20481             | 12736              |  |  |  |  |  |  |
| 34422            | 0.0                                     | 100.0               | 0.0062                  | 6749             | 4687                     | 3939      | 2439         | 22169             | 13786              |  |  |  |  |  |  |
| 5/192<br>40330   | 0.0                                     | 100.0               | 0.0057                  | 7010             | 5/03                     | 4230      | 2033         | 23933             | 14695              |  |  |  |  |  |  |
| 43589            | 0.0                                     | 100.0               | 0.0033                  | 8547             | 5935                     | 4988      | 3088         | 28073             | 17457              |  |  |  |  |  |  |
| 47294            | 0.0                                     | 100.0               | 0.0045                  | 9273             | 6440                     | 5412      | 3351         | 30459             | 18941              |  |  |  |  |  |  |
| 51169            | 0.0                                     | 100.0               | 0.0041                  | 10033            | 6967                     | 5856      | 3625         | 32955             | 20493              |  |  |  |  |  |  |
| 55385            | 0.0                                     | 100.0               | 0.0038                  | 10860            | 7542                     | 6338      | 3924         | 35670             | 22181              |  |  |  |  |  |  |



(B) Capillary Pressure Plot





| Well<br>Sample | Depth       |                 | 7         | Goon Nur<br>26.3 m      | e-9                 |                                  |                     |                 |                |              |                        |
|----------------|-------------|-----------------|-----------|-------------------------|---------------------|----------------------------------|---------------------|-----------------|----------------|--------------|------------------------|
| Client         | Gaoscianca  | Victoria        |           | Doneity (               | radiants (nsi/faat) | <u> </u>                         | Com                 | vorsion Paramat | ore (dynos/cm) |              |                        |
| Well           | Goon Nure-9 | )               |           | Density C               | Typical             |                                  | Con                 | air/water       | air/oil        | oil/water    | CO <sub>2</sub> /water |
|                |             |                 |           | Water:                  | 0.440               | Laboratory The                   | ta                  | 0.0             | 0.0            | 30.0         | 0.0                    |
| Test Method    | Air/Mercury | Capillary Press | ure       | Oil:                    | 0.330               | Laboratory IFT                   |                     | 72.0            | 24.0           | 48.0         | 72.0                   |
| Sample         | GN9         |                 |           | Gas:                    | 0.100               | Reservoir Theta<br>Reservoir IFT | l                   | 0.0             |                | 30.0<br>30.0 | 0.0<br>26.0            |
| Depth          | 726.30 m    |                 |           | CO <sub>2</sub> Density | 0.230               | Laboratory Tco:                  | sTheta              | 72.0            | 24.0           | 42.0         | 72.0                   |
|                |             |                 |           |                         |                     | Reservoir Tcos                   | Theta               | 50.0            |                | 26.0         | 26.0                   |
| n 11 (         |             |                 |           |                         | Estimated Column    | Entry I                          | Pressure (psia)     | Displacement I  | ressure (psia) | Threshold Pi | ressure (psia)         |
| Pore radius (p | ım)         | 0.052           |           | A-Hg                    | Height (feet)       | Lab<br>2057                      | Res Con             | Lab<br>2515     | Resv           | Lab<br>2686  | Resv                   |
|                |             |                 |           | G-W                     | 824                 | 404                              | 280                 | 493             | 343            | 527          | 366                    |
|                |             |                 |           | O-W                     | 1325                | 135                              | 146                 | 164             | 178            | 176          | 190                    |
|                |             |                 |           | CO <sub>2</sub> -W      | 437                 | 404                              | 146                 | 493             | 178            | 527          | 190                    |
|                |             |                 |           |                         |                     | Equivalent                       | Injection Pressures | Oil/Brine       | Oil/Brine      | Height Above | Height Above           |
|                | Raw         | Data            | Conforma  | ance Corrected          | Pore                | Air/Brine                        | Air/Brine           | Lab             | Reservoir      | Free Water   | Free Water             |
| Pressure       | Intrusion   | Saturation      | Intrusion | Saturation              | Diameter            | Lab                              | Res Con             | Conditions      | Conditions     | Oil-Water    | Gas-Water              |
| (psia)         | (percent)   | (percent)       | (percent) | (percent)               | (µm)                | (psi)                            | (psi)               | (psi)           | (psi)          | (feet)       | (feet)                 |
|                |             |                 |           |                         |                     |                                  |                     |                 |                |              |                        |
| 1.00           | 0.0         | 0.0             | 0.0       | 0.0                     | 211                 | 0.20                             | 0.14                | 0.11            | 0.07           | 0.64         | 0.40                   |
| 1.98           | 1.3         | 1.3             | 0.0       | 0.0                     | 107                 | 0.39                             | 0.27                | 0.23            | 0.14           | 1.28         | 0.79                   |
| 3.18           | 0.3         | 2.0             | 0.0       | 0.0                     | 66.7                | 0.62                             | 0.43                | 0.36            | 0.13           | 2.05         | 1.09                   |
| 3.73           | 0.4         | 2.7             | 0.0       | 0.0                     | 56.9                | 0.73                             | 0.51                | 0.43            | 0.26           | 2.40         | 1.49                   |
| 4.38           | 0.4         | 3.1             | 0.0       | 0.0                     | 48.4                | 0.86                             | 0.60                | 0.50            | 0.31           | 2.82         | 1.76                   |
| 5.18           | 0.4         | 3.5             | 0.0       | 0.0                     | 41.0                | 1.02                             | 0.71                | 0.59            | 0.37           | 3.34         | 2.08                   |
| 5.98           | 0.3         | 5.8<br>4 3      | 0.0       | 0.0                     | 55.5<br>30.4        | 1.17                             | 0.81                | 0.68            | 0.42           | 3.85<br>4.49 | 2.39                   |
| 8.27           | 0.5         | 4.8             | 0.0       | 0.0                     | 25.6                | 1.62                             | 1.13                | 0.95            | 0.59           | 5.33         | 3.32                   |
| 9.97           | 0.5         | 5.3             | 0.0       | 0.0                     | 21.3                | 1.95                             | 1.35                | 1.14            | 0.71           | 6.42         | 3.97                   |
| 11.5           | 0.4         | 5.7             | 0.0       | 0.0                     | 18.5                | 2.25                             | 1.56                | 1.32            | 0.82           | 7.43         | 4.59                   |
| 15.5           | 0.8         | 6.9             | 0.0       | 0.0                     | 13.7                | 3.04                             | 2.11                | 1.54            | 1.10           | 10.0         | 6.21                   |
| 18.5           | 0.5         | 7.4             | 0.0       | 0.0                     | 11.5                | 3.63                             | 2.52                | 2.12            | 1.31           | 11.9         | 7.41                   |
| 21.6           | 0.4         | 7.7             | 0.0       | 0.0                     | 9.83                | 4.24                             | 2.94                | 2.47            | 1.53           | 13.9         | 8.65                   |
| 25.3           | 0.4         | 8.1             | 0.0       | 0.0                     | 8.39                | 4.96                             | 3.44                | 2.90            | 1.80           | 16.4         | 10.1                   |
| 30.0           | 0.4         | 8.6             | 0.0       | 0.0                     | 5.70                | 7.29                             | 5.06                | 4.26            | 2.12           | 24.0         | 14.9                   |
| 47.2           | 0.1         | 8.6             | 0.0       | 0.0                     | 4.49                | 9.25                             | 6.42                | 5.40            | 3.34           | 30.4         | 18.9                   |
| 56.6           | 0.1         | 8.7             | 0.0       | 0.0                     | 3.75                | 11.1                             | 7.71                | 6.48            | 4.01           | 36.5         | 22.7                   |
| 66.3           | 0.1         | 8.9             | 0.0       | 0.0                     | 3.20                | 13.0                             | 9.03                | 7.59            | 4.70           | 42.7         | 26.6                   |
| 93.0           | 0.2         | 9.1             | 0.0       | 0.0                     | 2.04                | 18.2                             | 12.6                | 10.6            | 6.56           | 59.6         | 32.4                   |
| 111            | 0.2         | 9.5             | 0.0       | 0.0                     | 1.91                | 21.8                             | 15.1                | 12.7            | 7.86           | 71.5         | 44.4                   |
| 129            | 0.2         | 9.7             | 0.0       | 0.0                     | 1.65                | 25.3                             | 17.6                | 14.8            | 9.16           | 83.3         | 51.8                   |
| 152            | 0.3         | 9.9             | 0.0       | 0.0                     | 1.39                | 29.8                             | 20.7                | 17.4            | 10.8           | 98.2         | 60.9<br>71.8           |
| 210            | 0.2         | 10.2            | 0.0       | 0.0                     | 1.01                | 41.2                             | 28.6                | 20.5            | 14.9           | 135          | 84.1                   |
| 247            | 0.3         | 10.8            | 0.0       | 0.0                     | 0.860               | 48.4                             | 33.6                | 28.3            | 17.5           | 159          | 98.8                   |
| 292            | 0.3         | 11.1            | 0.0       | 0.0                     | 0.726               | 57.3                             | 39.8                | 33.4            | 20.7           | 188          | 117                    |
| 343            | 0.4         | 11.5            | 0.0       | 0.0                     | 0.619               | 67.3<br>78.6                     | 46.7                | 39.3            | 24.3           | 221          | 137                    |
| 472            | 0.4         | 12.0            | 0.5       | 0.5                     | 0.449               | 92.5                             | 64.2                | 54.0            | 33.4           | 304          | 189                    |
| 553            | 0.5         | 12.9            | 0.5       | 1.0                     | 0.383               | 108                              | 75.0                | 63.3            | 39.2           | 356          | 221                    |
| 647            | 0.6         | 13.5            | 0.7       | 1.7                     | 0.328               | 127                              | 88.2                | 74.0            | 45.8           | 416          | 259                    |
| 887            | 0.8         | 14.5            | 1.0       | 2.6                     | 0.280               | 148                              | 103                 | 102             | 55.0<br>63.1   | 487<br>574   | 356                    |
| 1048           | 1.2         | 16.3            | 1.4       | 5.0                     | 0.202               | 205                              | 142                 | 120             | 74.3           | 675          | 418                    |
| 1227           | 1.3         | 17.6            | 1.5       | 6.5                     | 0.173               | 241                              | 167                 | 140             | 86.7           | 788          | 491                    |
| 1439           | 1.6         | 19.3            | 1.8       | 8.3                     | 0.147               | 282                              | 196                 | 165             | 102            | 927          | 576                    |
| 1828           | 1.3         | 21.4            | 1.5       | 12.2                    | 0.120               | 358                              | 230                 | 209             | 129            | 1173         | 732                    |
| 2142           | 2.9         | 25.6            | 3.3       | 15.5                    | 0.0990              | 420                              | 292                 | 245             | 152            | 1382         | 859                    |
| 2510           | 4.3         | 30.0            | 4.9       | 20.4                    | 0.0845              | 492                              | 342                 | 287             | 178            | 1618         | 1006                   |
| 2945           | /.9         | 37.9<br>49.4    | 9.0       | 29.5<br>42.6            | 0.0720              | 577                              | 401                 | 337             | 209            | 2227         | 1179                   |
| 4040           | 24.0        | 73.4            | 27.3      | 69.8                    | 0.0525              | 792                              | 550                 | 462             | 286            | 2600         | 1618                   |
| 4728           | 25.3        | 98.7            | 28.7      | 98.5                    | 0.0448              | 927                              | 644                 | 541             | 335            | 3045         | 1894                   |
| 5114           | 0.3         | 99.0            | 0.4       | 98.9                    | 0.0415              | 1003                             | 697                 | 585             | 362            | 3291         | 2050                   |
| 7033           | 0.5         | 99.5            | 0.5       | 99.4                    | 0.0353              | 11//                             | 817                 | 687<br>805      | 425            | 3864         | 2403                   |
| 7895           | 0.1         | 99.9            | 0.1       | 99.9                    | 0.0269              | 1548                             | 1075                | 904             | 560            | 5091         | 3162                   |
| 8920           | 0.1         | 100.0           | 0.1       | 100.0                   | 0.0238              | 1749                             | 1215                | 1021            | 632            | 5745         | 3574                   |
| 9649           | 0.0         | 100.0           | 0.0       | 100.0                   | 0.0220              | 1892                             | 1314                | 1104            | 683            | 6209         | 3865                   |
| 12283          | 0.0         | 100.0           | 0.0       | 100.0                   | 0.0203              | 2408                             | 1423                | 1406            | 870            | 7909         | 4918                   |
| 14333          | 0.0         | 100.0           | 0.0       | 100.0                   | 0.0148              | 2810                             | 1951                | 1640            | 1015           | 9227         | 5738                   |
| 16381          | 0.0         | 100.0           | 0.0       | 100.0                   | 0.0129              | 3212                             | 2231                | 1875            | 1161           | 10555        | 6562                   |
| 18481          | 0.0         | 100.0           | 0.0       | 100.0                   | 0.0115              | 3624                             | 2517                | 2115            | 1309           | 11900        | 7403                   |
| 23149          | 0.0         | 100.0           | 0.0       | 100.0                   | 0.0092              | 4539                             | 3152                | 2649            | 1640           | 14909        | 9271                   |
| 25064          | 0.0         | 100.0           | 0.0       | 100.0                   | 0.0085              | 4915                             | 3413                | 2868            | 1775           | 16136        | 10038                  |
| 27135          | 0.0         | 100.0           | 0.0       | 100.0                   | 0.0078              | 5321                             | 3695                | 3105            | 1922           | 17473        | 10868                  |
| 29376          | 0.0         | 100.0           | 0.0       | 100.0                   | 0.0072              | 5760                             | 4000                | 3362            | 2081           | 18918        | 11765                  |
| 31804<br>34421 | 0.0         | 100.0           | 0.0       | 100.0                   | 0.0067              | 6749                             | 4331<br>4687        | 3640<br>3939    | 2253           | 20482        | 12/38                  |
| 37192          | 0.0         | 100.0           | 0.0       | 100.0                   | 0.0057              | 7293                             | 5065                | 4256            | 2635           | 23955        | 14897                  |
| 40343          | 0.0         | 100.0           | 0.0       | 100.0                   | 0.0053              | 7910                             | 5493                | 4617            | 2858           | 25982        | 16156                  |
| 43591          | 0.0         | 100.0           | 0.0       | 100.0                   | 0.0049              | 8547                             | 5935                | 4989            | 3088           | 28073        | 17456                  |
| 4/291<br>51172 | 0.0         | 100.0           | 0.0       | 100.0                   | 0.0045              | 9273<br>10034                    | 6968                | 5856            | 3625           | 32955        | 20494                  |
| 55387          | 0.0         | 100.0           | 0.0       | 100.0                   | 0.0038              | 10860                            | 7542                | 6339            | 3924           | 35673        | 22182                  |
| 59880          | 0.0         | 100.0           | 0.0       | 100.0                   | 0.0035              | 11741                            | 8153                | 6853            | 4242           | 38564        | 23979                  |









(C) Pore Size Distribution plot

| Well           |                |                 | (         | Groper-1           |                      |                 |                     |                 |                 |              |
|----------------|----------------|-----------------|-----------|--------------------|----------------------|-----------------|---------------------|-----------------|-----------------|--------------|
| Sample         | Depth          |                 | 9         | 909.15 n           | 1                    |                 |                     |                 |                 |              |
| Client         | Geoscience A   | AVictoria       |           | Density (          | Gradients (psi/foot) |                 | Con                 | version Paramet | ers (dynes/cm)  | )            |
| Well           | Groper-1       |                 |           |                    | Typical              |                 |                     | air/water       | air/oil         | oil/water    |
|                |                |                 |           | Water:             | 0.440                | Laboratory The  | ta                  | 0.0             | 0.0             | 30.0         |
| Test Method    | Air/Mercurv    | Capillary Press | ure       | Oil:               | 0.330                | Laboratory IFT  |                     | 72.0            | 24.0            | 48.0         |
|                | -              |                 |           | Gas:               | 0.100                | Reservoir Theta | ı                   | 0.0             |                 | 30.0         |
| Sample         | G1             |                 |           |                    |                      | Reservoir IFT   |                     | 50.0            |                 | 30.0         |
| Depth          | Depth 909.15 m |                 |           |                    | 0.235                | Laboratory Tco: | sTheta              | 72.0            | 24.0            | 42.0         |
|                |                |                 |           | 2 5                |                      | Reservoir Tcos  | Theta               | 50.0            |                 | 26.0         |
|                |                |                 |           |                    | Estimated Column     | Entry I         | Pressure (psia)     | Displacement    | Pressure (psia) | Threshold    |
| Pore radius (1 | um)            | 0.045           |           | System             | Height (feet)        | Lab             | Res Con             | Lab             | Resv            | Lab          |
|                |                |                 |           | A-Hg               | na                   | 2352            | -                   | 2628            | -               | 2807         |
|                |                |                 |           | G-W                | 943                  | 461             | 320                 | 516             | 358             | 551          |
|                |                |                 |           | O-W                | 1515                 | 154             | 167                 | 172             | 186             | 184          |
|                |                |                 |           | CO <sub>2</sub> -W | 503                  | 461             | 167                 | 516             | 186             | 551          |
|                |                |                 |           |                    |                      |                 |                     |                 |                 |              |
|                |                |                 |           |                    |                      | Equivalent      | Injection Pressures | Oil/Brine       | Oil/Brine       | Height Above |
|                | Raw            | Data            | Conform   | ance Corrected     | Pore                 | Air/Brine       | Air/Brine           | Lab             | Reservoir       | Free Water   |
| Pressure       | Intrusion      | Saturation      | Intrusion | Saturation         | Diameter             | Lab             | Res Con             | Conditions      | Conditions      | Oil-Water    |
| (psia)         | (percent)      | (percent)       | (percent) | (percent)          | (µm)                 | (psi)           | (psi)               | (psi)           | (psi)           | (feet)       |
|                |                |                 |           |                    |                      | • •             |                     |                 | <u> </u>        |              |
| 1.00           | 0.0            | 0.0             | 0.0       | 0.0                | 211                  | 0.20            | 0.14                | 0.11            | 0.07            | 0.64         |
| 1.98           | 0.7            | 0.7             | 0.0       | 0.0                | 107                  | 0.39            | 0.27                | 0.23            | 0.14            | 1.28         |
| 2.73           | 0.3            | 1.0             | 0.0       | 0.0                | 77.6                 | 0.54            | 0.37                | 0.31            | 0.19            | 1.75         |
| 3.18           | 0.1            | 1.1             | 0.0       | 0.0                | 66.7                 | 0.62            | 0.43                | 0.36            | 0.23            | 2.05         |
| 3.73           | 0.1            | 1.2             | 0.0       | 0.0                | 56.9                 | 0.73            | 0.51                | 0.43            | 0.26            | 2.40         |
| 4.38           | 0.1            | 1.4             | 0.0       | 0.0                | 48.4                 | 0.86            | 0.60                | 0.50            | 0.31            | 2.82         |
| 5.18           | 0.1            | 1.5             | 0.0       | 0.0                | 41.0                 | 1.02            | 0.71                | 0.59            | 0.37            | 3.34         |
| 5.98           | 0.1            | 1.6             | 0.0       | 0.0                | 35.5                 | 1.17            | 0.81                | 0.68            | 0.42            | 3.85         |
| 6.97           | 0.1            | 1.8             | 0.0       | 0.0                | 30.4                 | 1.37            | 0.95                | 0.80            | 0.49            | 4.49         |
| 8.27           | 0.1            | 1.9             | 0.0       | 0.0                | 25.6                 | 1.62            | 1.13                | 0.95            | 0.59            | 5.33         |
| 9.97           | 0.2            | 2.0             | 0.0       | 0.0                | 21.3                 | 1.95            | 1.35                | 1.14            | 0.71            | 6.42         |
| 11.5           | 0.1            | 2.2             | 0.0       | 0.0                | 18.5                 | 2.25            | 1.56                | 1.32            | 0.82            | 7.43         |
| 13.5           | 0.1            | 2.3             | 0.0       | 0.0                | 15.7                 | 2.65            | 1.84                | 1.54            | 0.95            | 8.66         |
| 15.5           | 0.1            | 2.4             | 0.0       | 0.0                | 12.7                 | 2.04            | 2.11                | 1 77            | 1.10            | 10.0         |

11.5

9.83

8.39

7.08

5.70 4.49

3.75 3.20

2.64

2.28

1.91

1.65

1.39

1.18

1.01

0.860

0.726

0.619

0.528

0 4 4 9

0.383

0.328

0.280

0 2 3 9

0.202

0.173

0.147

0.126

0.116 0.0990

0.0845 0.0720

0.0615 0.0525

0.0448

0.0415

0.0353

0.0301

0.0269

0.0238

0.0203 0.0173

0.0148

0.0129

0.0115

0.0104

0.0092

0.0085

0.0078

0.0072

0.0067

0.0062

0.0057

0.0053 0.0049

0.0045

0.0041

0.0038

0.0035

3.63

4.24

4.96 5.88

7.29 9.25

11.1 13.0

15.8 18.2

21.8

25.3

29.8

35.1

41.2

48.4 57.3

67.3 78.6

92.5

108

127

148

174

205

241

282 331

358 420

492 577

676 792

927

1003

1177

1379

1548

1749

1892

2049

2408

2810

3212

3624

4016

4539

4915

5321

5760

6236

6749

7293

7910 8547

9273

10034

10860

11741

2.52

2.94

3 44

4.08

5.06 6.42

7.71

9.03

11.0 12.6

15.1

17.6

20.7

24.4

28.6

33.6

39.8

46.7 54.6

64.2

75.0

88.2

103

121

142

167 196 230

249 292

342 401

469 550

644 697

817

958

1075

1215

1314

1423

1672

1951

2231

2517

2789

3152

3413

3695

4000

4331

4687

5065

5493 5935

6440

6968

7542

8153

2.12

2.47

2.90

3.43

4.26 5.40

6.48 7.59

9.20

10.6

127

14.8

174

20.5

24.0

28.3 33.4

39.3 45.9

54.0

63.3

74.0

86.6

102

120

140

165

193

209 245

287 337

395 462

541 585

687

805

904

1021

1104

1196

1406

1640

1875

2115 2344

2649 2868

3105

3362

3640

3939 4256

4617 4989

5412 5856

6339

6853



CO<sub>2</sub>/water

0.0 72.0

0.0

26.0

72.0

26.0

e (psia)

382

199

Height Above

Free Water

Gas-Water (feet)

0.40

0.79

1.09

1.27

1.49

1.76 2.08

2.39 2.80

3.32

3.97 4.59

5.41 6.21 7.41

8.65 10.1

12.0

14.9 18.9

22.7 26.6

32.4 37.1

44.4 51.8

60.9 71.8 84.1

98.8 117

137

161

189

221

259

303

356

418

491

576

676

732 859

1006 1179

1379

1618

1894

2050

2403

2818

3162

3574

3865

4185

4918

5738

6562

7403

8203

9271

10038

10868

11765

12738

13785 14897

16156 17456

18941

20494

22182

23979

Resv

10.0

11.9

13.9

16.4

19.3

24.0

30.4

36.5 42.7

51.8

59.6

71.5

83.3

98.2 115 135

159 188

221 258

304

356

416

487

574

675

788

927

1082

1173 1382

1618 1900

2227

2600

3045

3291

3864

4527

5091

5745

6209

6727

7909

9227

10555

11900

13191

14909

16136

17473

18918

20482

22164

23955

25982

28073

30455 32955

35673

38564

1.31

1.53

1.80

2.12

2.64 3.34

4.01 4.70

5.70

6.56

7 86

9.16

10.8 12.7

14.9

17.5

20.7

24.3 28.4

33.4

39.2

45.8

53.6

63.1 74.3

86.7

102

119

129 152

178 209

245

286

335

362

425

498

560

632

683

740

870

1015

1161

1309

1451

1640

1775

1922

2081 2253

2438

2635

2858

3088

3350

3625

3924

4242

100.0 100.0 (A) Interpreted Capillary Pressure Chart

18.5

21.6

25.3

30.0

37.2 47.2

56.6 66.3

80.4 93.0

111

129

152 179 210

247 292

343 401

472

553

647

757

887

1048

1227

1439

1688

1828 2142

2510 2945

3449

4040

4728

5114

6002

7033

7895

8920

9649

10452 12283

14333

16381

18481

20481

23149

25064

27135

29376

31804

34421 37192

40343 43591

47291 51172

55387 59880

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.2

0.3

03

0.4

0.4

0.5

0.7

0.4

1.1

2.2 7.9

26.1 24.1

17.5

4.1

6.6

2.2 0.2

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

2.6 2.7 2.8 2.9 3.0 3.0

3.1 3.2

3.2 3.3 3.4 3.5

3.6 3.7 3.8 3.9 4.1

4.2 4.3 4.5 4.7 5.0

5.0 5.2 5.5 5.9

6.3 6.9 7.5 8.0 9.1

11.3 19.2

45.3

69.3

86.9

91.0

97.6

99.8

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.2 0.2

0.2

0.3

0.3 0.4

0.5

0.5

0.7

0.5

1.1

2.3 8.3

273

25.2

18.3 4.3

6.9 2.3 0.2

0.0

0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.2 0.4

0.6

0.9

1.2 1.6

2.1 2.6 3.3

3.8 4.9

7.2 15.5

42.8

68.0

863

90.6

97.5

99.8

100.0

100.0 100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0 100.0

100.0

100.0

100.0

100.0

100.0

100.0







ACS LABORATORIES PTY. LTD.

| Well         |   |
|--------------|---|
| Sample Depth | ı |

Groper-1 926.1 m



| Client          | Geoscience Victo  | oria                   |                  |                         |                  |            |                  |                                   | Conversi             | on Parameters |                   |                   |  |  |  |  |  |  |
|-----------------|-------------------|------------------------|------------------|-------------------------|------------------|------------|------------------|-----------------------------------|----------------------|---------------|-------------------|-------------------|--|--|--|--|--|--|
| Well            | Groper-1          |                        |                  |                         |                  |            |                  |                                   |                      | air/water     | air/oil           | oil/water         |  |  |  |  |  |  |
| Test Mathad     | Air/Mercury Con   | illary Proceura Dr.    | ainage           |                         |                  |            | Laboratory Theta |                                   |                      | 0.0           | 0.0               | 30.0<br>48.0      |  |  |  |  |  |  |
| i est methou    | . in microury Cap | mary i ressure Die     |                  |                         |                  |            | Reservoir Theta  |                                   |                      | 0.0           | 24.0              | 30.0              |  |  |  |  |  |  |
| Sample          | Groper-1          |                        |                  | Ambient Perme           | ability          |            | Reservoir IFT    |                                   |                      | 50.0          | 1                 | 30.0              |  |  |  |  |  |  |
| Depth           | 926.10            | m                      |                  | Ambient Porosit         | ty               |            | Laboratory TcosT | Theta                             |                      | 72.0          | 24.0              | 42.0              |  |  |  |  |  |  |
| pore radius (um | )                 |                        |                  |                         |                  |            | Reservoir TcosTi | neta<br>Density Gradients, psi/fa | oot                  | 50.0          |                   | 20.0              |  |  |  |  |  |  |
| 0.425           | Entry Pressure (p | sia)                   | Displacement Pre | essure (psia)           | Threshold Pressu | ire (psia) |                  | , in an interest part             | Typical              | 1             |                   |                   |  |  |  |  |  |  |
| System          | Lab               | Resv                   | Lab              | Resv                    | Lab              | Resv       | Water:           |                                   | 0.440                |               |                   |                   |  |  |  |  |  |  |
| A-Hg<br>C-W     | 250.4             | - 34.1                 | 293.5            | - 40.0                  | 347.9            | - 47.4     | Oil:<br>Gas:     |                                   | 0.330                |               |                   |                   |  |  |  |  |  |  |
| o-w             | 16.4              | 17.7                   | 19.2             | 20.8                    | 22.8             | 24.6       | 043.             |                                   | 0.100                | 4             |                   |                   |  |  |  |  |  |  |
|                 |                   |                        |                  |                         |                  |            |                  |                                   |                      |               |                   |                   |  |  |  |  |  |  |
|                 |                   |                        |                  |                         |                  | Pore       | Equivalent       | Injection Pressures               |                      |               | Height Above Free | Height Above Free |  |  |  |  |  |  |
| Pressure        |                   | Intrusion<br>(percent) |                  | Saturation<br>(paraant) |                  | Diameter   | A/B Lab          | A/B Res                           | O/B Lab              | O/B Res       | Water (feet)      | Water (feet)      |  |  |  |  |  |  |
| (psia)          |                   | (percent)              |                  | (percent)               |                  | (µIII)     |                  |                                   |                      |               | Oil-Water         | Gas-water         |  |  |  |  |  |  |
|                 |                   |                        |                  |                         |                  |            |                  |                                   |                      | 0.05          | 0.65              | 0.40              |  |  |  |  |  |  |
| 1.01            |                   | 0.0                    |                  | 0.0                     |                  | 210        | 0.20             | 0.14                              | 0.12                 | 0.07          | 0.65              | 0.40              |  |  |  |  |  |  |
| 2.74            |                   | 0.0                    |                  | 0.0                     |                  | 77.5       | 0.54             | 0.37                              | 0.31                 | 0.19          | 1.76              | 1.10              |  |  |  |  |  |  |
| 3.19            |                   | 0.0                    |                  | 0.0                     |                  | 66.5       | 0.63             | 0.43                              | 0.37                 | 0.23          | 2.05              | 1.28              |  |  |  |  |  |  |
| 3.74            |                   | 0.0                    |                  | 0.0                     |                  | 56.7       | 0.73             | 0.51                              | 0.43                 | 0.26          | 2.41              | 1.50              |  |  |  |  |  |  |
| 4.38            |                   | 0.0                    |                  | 0.0                     |                  | 48.4       | 1.02             | 0.80                              | 0.59                 | 0.31          | 3.34              | 2.07              |  |  |  |  |  |  |
| 5.98            |                   | 0.0                    |                  | 0.0                     |                  | 35.4       | 1.2              | 0.81                              | 0.68                 | 0.42          | 3.85              | 2.39              |  |  |  |  |  |  |
| 6.98            |                   | 0.0                    |                  | 0.0                     |                  | 30.4       | 1.4              | 0.95                              | 0.80                 | 0.49          | 4.50              | 2.80              |  |  |  |  |  |  |
| 8.28            |                   | 0.0                    |                  | 0.0                     |                  | 25.6       | 1.6              | 1.13                              | 0.95                 | 0.59          | 5.33              | 3.32              |  |  |  |  |  |  |
| 11.5            |                   | 0.0                    |                  | 0.0                     |                  | 18.5       | 2.3              | 1.6                               | 1.3                  | 0.81          | 7.41              | 4.61              |  |  |  |  |  |  |
| 13.5            |                   | 0.0                    |                  | 0.0                     |                  | 15.7       | 2.6              | 1.8                               | 1.5                  | 0.96          | 8.69              | 5.41              |  |  |  |  |  |  |
| 15.5            |                   | 0.0                    |                  | 0.0                     |                  | 13.7       | 3.0              | 2.1                               | 1.8                  | 1.10          | 9.98              | 6.21              |  |  |  |  |  |  |
| 21.6            |                   | 0.0                    |                  | 0.0                     |                  | 9.83       | 5.6<br>4.2       | 2.3                               | 2.1                  | 1.5           | 13.91             | 8.65              |  |  |  |  |  |  |
| 25.3            |                   | 0.0                    |                  | 0.0                     |                  | 8.39       | 5.0              | 3.4                               | 2.9                  | 1.8           | 16.29             | 10.13             |  |  |  |  |  |  |
| 30.0            |                   | 0.0                    |                  | 0.0                     |                  | 7.08       | 5.9              | 4.1                               | 3.4                  | 2.1           | 19.32             | 12.01             |  |  |  |  |  |  |
| 37.7            |                   | 0.0                    |                  | 0.0                     |                  | 5.63       | 7.4              | 5.1                               | 4.3                  | 2.7           | 24.28             | 15.10             |  |  |  |  |  |  |
| 56.3            |                   | 0.0                    |                  | 0.0                     |                  | 3.76       | 11.0             | 7.7                               | 6.4                  | 4.0           | 36.26             | 22.55             |  |  |  |  |  |  |
| 67.2            |                   | 0.0                    |                  | 0.0                     |                  | 3.15       | 13               | 9.2                               | 7.7                  | 4.8           | 43.28             | 26.91             |  |  |  |  |  |  |
| 78.2            |                   | 0.0                    |                  | 0.0                     |                  | 2.71       | 15               | 10.6                              | 8.9                  | 5.5           | 50.36             | 31.32             |  |  |  |  |  |  |
| 110             |                   | 0.0                    |                  | 0.0                     |                  | 1.94       | 22               | 12                                | 10.5                 | 7.8           | 70.84             | 44.05             |  |  |  |  |  |  |
| 128             |                   | 0.0                    |                  | 0.0                     |                  | 1.66       | 25               | 17                                | 15                   | 9.1           | 82.44             | 51.26             |  |  |  |  |  |  |
| 153             |                   | 0.0                    |                  | 0.0                     |                  | 1.39       | 30               | 21                                | 18                   | 10.8          | 98.54             | 61.27             |  |  |  |  |  |  |
| 210             |                   | 0.0                    |                  | 0.0                     |                  | 1.18       | 35<br>41         | 25                                | 21                   | 15            | 115.93            | 72.09             |  |  |  |  |  |  |
| 246             |                   | 0.0                    |                  | 0.0                     |                  | 0.863      | 48               | 33                                | 28                   | 17            | 158.4             | 98.52             |  |  |  |  |  |  |
| 289             |                   | 1.2                    |                  | 1.2                     |                  | 0.733      | 57               | 39                                | 33                   | 20            | 186.1             | 115.74            |  |  |  |  |  |  |
| 343             |                   | 1.8                    |                  | 3.0                     |                  | 0.617      | 67<br>79         | 47                                | 39                   | 24            | 220.9             | 137.4             |  |  |  |  |  |  |
| 405             |                   | 3.2                    |                  | 8.6                     |                  | 0.450      | 92               | 64                                | 54                   | 33            | 303.3             | 188.6             |  |  |  |  |  |  |
| 555             |                   | 3.9                    |                  | 12.5                    |                  | 0.382      | 109              | 76                                | 64                   | 39            | 357.4             | 222.3             |  |  |  |  |  |  |
| 646             |                   | 4.0                    |                  | 16.5                    |                  | 0.328      | 127              | 88                                | 74                   | 46            | 416.1             | 258.7             |  |  |  |  |  |  |
| 887             |                   | 3.0                    |                  | 22.7                    |                  | 0.230      | 148              | 121                               | 102                  | 63            | 571.3             | 355.2             |  |  |  |  |  |  |
| 1047            |                   | 3.0                    |                  | 25.7                    |                  | 0.203      | 205              | 143                               | 120                  | 74            | 674.3             | 419.3             |  |  |  |  |  |  |
| 1227            |                   | 2.9                    |                  | 28.6                    |                  | 0.173      | 241              | 167                               | 140                  | 87            | 790.2             | 491.4             |  |  |  |  |  |  |
| 1686            |                   | 3.2                    |                  | 34.7                    |                  | 0.147      | 331              | 230                               | 193                  | 119           | 1085.9            | 675.2             |  |  |  |  |  |  |
| 1825            |                   | 2.8                    |                  | 36.3                    |                  | 0.116      | 358              | 249                               | 209                  | 129           | 1175              | 730.9             |  |  |  |  |  |  |
| 2140            |                   | 3.6                    |                  | 39.9                    |                  | 0.0991     | 420              | 291                               | 245                  | 152           | 1378              | 857.0             |  |  |  |  |  |  |
| 2941            |                   | 4.4                    |                  | 48.2                    |                  | 0.0340     | 577              | 400                               | 337                  | 208           | 1894              | 1178              |  |  |  |  |  |  |
| 3445            |                   | 4.7                    |                  | 52.9                    |                  | 0.0615     | 675              | 469                               | 394                  | 244           | 2219              | 1380              |  |  |  |  |  |  |
| 4040            |                   | 5.2                    |                  | 58.1                    |                  | 0.0525     | 792              | 550                               | 462                  | 286           | 2602              | 1618              |  |  |  |  |  |  |
| 5115            |                   | 4.8                    |                  | 67.1                    |                  | 0.0448     | 1003             | 696                               | 585                  | 362           | 3294              | 2048              |  |  |  |  |  |  |
| 6002            |                   | 4.5                    |                  | 71.5                    |                  | 0.0353     | 1177             | 817                               | 687                  | 425           | 3866              | 2404              |  |  |  |  |  |  |
| 7032            |                   | 3.9                    |                  | 75.4                    |                  | 0.0301     | 1379             | 958                               | 805                  | 498           | 4529              | 2816              |  |  |  |  |  |  |
| 7895            |                   | 2.6                    |                  | /8.0                    |                  | 0.0269     | 1548             | 10/5                              | 904                  | 559           | 5085              | 3162              |  |  |  |  |  |  |
| 9661            |                   | 1.9                    |                  | 82.4                    |                  | 0.0219     | 1894             | 1315                              | 1106                 | 684           | 6222              | 3869              |  |  |  |  |  |  |
| 10463           |                   | 1.6                    |                  | 83.9                    |                  | 0.0203     | 2052             | 1425                              | 1197                 | 741           | 6739              | 4190              |  |  |  |  |  |  |
| 12295           |                   | 2.9                    |                  | 86.8                    |                  | 0.0172     | 2411             | 1674                              | 1407                 | 871           | 7919              | 4924              |  |  |  |  |  |  |
| 16392           |                   | 2.0                    |                  | 91.0                    |                  | 0.0148     | 3214             | 2232                              | 1876                 | 1161          | 10557             | 6565              |  |  |  |  |  |  |
| 18495           |                   | 1.3                    |                  | 92.3                    |                  | 0.0115     | 3626             | 2518                              | 2117                 | 1310          | 11912             | 7407              |  |  |  |  |  |  |
| 20493           |                   | 1.3                    |                  | 93.6                    |                  | 0.0103     | 4018             | 2790                              | 2345                 | 1452          | 13198             | 8207              |  |  |  |  |  |  |
| 23154           |                   | 1.2                    |                  | 94.8                    |                  | 0.0092     | 4540             | 3153                              | 2650                 | 1640          | 14912             | 9273              |  |  |  |  |  |  |
| 27139           |                   | 0.6                    |                  | 95.9                    |                  | 0.0078     | 5321             | 3695                              | 3106                 | 1923          | 17479             | 10869             |  |  |  |  |  |  |
| 29380           |                   | 0.8                    |                  | 96.7                    |                  | 0.0072     | 5761             | 4001                              | 3362                 | 2081          | 18922             | 11766             |  |  |  |  |  |  |
| 31806           |                   | 0.5                    |                  | 97.2                    |                  | 0.0067     | 6236             | 4331                              | 3640                 | 2253          | 20484             | 12738             |  |  |  |  |  |  |
| 34426           |                   | 0.7                    |                  | 97.9                    |                  | 0.0062     | 7293             | 4088                              | 3940<br>4256         | 2439          | 22172             | 13/8/<br>14895    |  |  |  |  |  |  |
| 40344           |                   | 0.4                    |                  | 98.5                    |                  | 0.0053     | 7911             | 5493                              | 4617                 | 2858          | 25983             | 16157             |  |  |  |  |  |  |
| 43594           |                   | 0.5                    |                  | 99.0                    |                  | 0.0049     | 8548             | 5936                              | 4989                 | 3088          | 28076             | 17459             |  |  |  |  |  |  |
| 4/295           |                   | 0.4                    |                  | 99.4<br>99.7            |                  | 0.0045     | 9274<br>10034    | 0440<br>6968                      | 541 <i>3</i><br>5856 | 3351          | 30460             | 18941             |  |  |  |  |  |  |
| 55383           |                   | 0.1                    |                  | 99.9                    |                  | 0.0038     | 10859            | 7541                              | 6338                 | 3924          | 35669             | 22180             |  |  |  |  |  |  |
| 59872           |                   | 0.1                    |                  | 100.0                   |                  | 0.0035     | 11740            | 8153                              | 6852                 | 4242          | 38560             | 23978             |  |  |  |  |  |  |



(B) Capillary Pressure Plot



(C) Pore Size Distribution plot



| Well         |  |
|--------------|--|
| Sample Depth |  |

Groper-1 932.00 m



| Client          | Geoscience Victoria               |                              |                  | 1         |                    | Conversio                             | on Parameters |           |                    |                   |  |  |  |  |  |
|-----------------|-----------------------------------|------------------------------|------------------|-----------|--------------------|---------------------------------------|---------------|-----------|--------------------|-------------------|--|--|--|--|--|
| Well            | Groper-1                          |                              |                  |           |                    |                                       | Conversio     | air/water | air/oil            | oil/water         |  |  |  |  |  |
|                 |                                   |                              |                  |           | Laboratory Theta   | ı                                     |               | 0.0       | 0.0                | 30.0              |  |  |  |  |  |
| Test Method     | Air/Mercury Capillary Pressure Dr | rainage                      |                  |           | Laboratory IFT     |                                       |               | 72.0      | 24.0               | 48.0              |  |  |  |  |  |
|                 |                                   |                              |                  |           | Reservoir Theta    |                                       |               | 0.0       |                    | 30.0              |  |  |  |  |  |
| Sample          | Groper-1 A                        | Ambient Perme                | ability          |           | Reservoir IFT      | T1 (                                  |               | 50.0      | 24.0               | 30.0              |  |  |  |  |  |
| Deptn           | 932.00 m                          | Ambient Porosi               | ty               |           | Laboratory I cos I | I neta                                |               | 72.0      | 24.0               | 42.0              |  |  |  |  |  |
| pore radius (un | 0                                 |                              |                  |           | Reservoir reos ri  | Density Gradients, psi/f              | òot           | 50.0      |                    | 20.0              |  |  |  |  |  |
| 0.680           | Entry Pressure (psia)             | Displacement Pressure (psia) | Threshold Pressu | re (psia) |                    | · · · · · · · · · · · · · · · · · · · | Typical       |           |                    |                   |  |  |  |  |  |
| System          | Lab Resv                          | Lab Resv                     | Lab              | Resv      | Water:             | [                                     | 0.440         |           |                    |                   |  |  |  |  |  |
| A-Hg            | 156.5 -                           | 151.3 -                      | 285.0            | -         | Oil:               |                                       | 0.330         |           |                    |                   |  |  |  |  |  |
| G-W             | 30.7 21.3                         | 29.7 20.6                    | 55.9             | 38.8      | Gas:               |                                       | 0.100         | 1         |                    |                   |  |  |  |  |  |
| 0-w             | 10.2 11.1                         | 9.9 10.7                     | 18.0             | 20.2      | 1                  |                                       |               |           |                    |                   |  |  |  |  |  |
|                 |                                   |                              |                  | Dama      | Emission           | Inite time Deservation                |               |           | Haisht Abassa Fara | Hainht Abaus Ener |  |  |  |  |  |
| Proseturo       | Intrusion                         | Saturation                   |                  | Diameter  | A/B Lab            | A/B Ree                               | O/B Lab       | O/B Res   | Water (feet)       | Water (feet)      |  |  |  |  |  |
| (nsia)          | (percent)                         | (nercent)                    |                  | (um)      | A/D Lab            | A D KC3                               | O/D Lab       | 0/10 1403 | Oil-Water          | Gas-Water         |  |  |  |  |  |
| (1.0.11)        | ()                                | (F1111)                      |                  | 4- /      |                    |                                       |               |           |                    |                   |  |  |  |  |  |
|                 |                                   |                              |                  |           |                    |                                       |               |           |                    |                   |  |  |  |  |  |
| 1.01            | 0.0                               | 0.0                          |                  | 210       | 0.20               | 0.14                                  | 0.12          | 0.07      | 0.65               | 0.40              |  |  |  |  |  |
| 1.99            | 0.0                               | 0.0                          |                  | 10/       | 0.39               | 0.27                                  | 0.23          | 0.14      | 1.28               | 0.80              |  |  |  |  |  |
| 3 19            | 0.0                               | 0.0                          |                  | 66.5      | 0.63               | 0.43                                  | 0.37          | 0.23      | 2.05               | 1.10              |  |  |  |  |  |
| 3.74            | 0.0                               | 0.0                          |                  | 56.7      | 0.73               | 0.51                                  | 0.43          | 0.26      | 2.41               | 1.50              |  |  |  |  |  |
| 4.38            | 0.0                               | 0.0                          |                  | 48.4      | 0.86               | 0.60                                  | 0.50          | 0.31      | 2.82               | 1.75              |  |  |  |  |  |
| 5.18            | 0.0                               | 0.0                          |                  | 40.9      | 1.02               | 0.71                                  | 0.59          | 0.37      | 3.34               | 2.07              |  |  |  |  |  |
| 5.98            | 0.0                               | 0.0                          |                  | 35.4      | 1.2                | 0.81                                  | 0.68          | 0.42      | 3.85               | 2.39              |  |  |  |  |  |
| 6.98            | 0.0                               | 0.0                          |                  | 30.4      | 1.4                | 0.95                                  | 0.80          | 0.49      | 4.50               | 2.80              |  |  |  |  |  |
| 9.98            | 0.0                               | 0.0                          |                  | 21.2      | 2.0                | 1.15                                  | 1.14          | 0.71      | 6.43               | 4.00              |  |  |  |  |  |
| 11.5            | 0.0                               | 0.0                          |                  | 18.5      | 2.3                | 1.6                                   | 1.3           | 0.81      | 7.41               | 4.61              |  |  |  |  |  |
| 13.5            | 0.0                               | 0.0                          |                  | 15.7      | 2.6                | 1.8                                   | 1.5           | 0.96      | 8.69               | 5.41              |  |  |  |  |  |
| 15.5            | 0.0                               | 0.0                          |                  | 13.7      | 3.0                | 2.1                                   | 1.8           | 1.10      | 9.98               | 6.21              |  |  |  |  |  |
| 18.5            | 0.0                               | 0.0                          |                  | 11.5      | 3.6                | 2.5                                   | 2.1           | 1.3       | 11.91              | 7.41              |  |  |  |  |  |
| 21.0            | 0.0                               | 0.0                          |                  | 9.85      | 4.2                | 2.9                                   | 2.3           | 1.5       | 15.91              | 8.05              |  |  |  |  |  |
| 30.0            | 0.0                               | 0.0                          |                  | 7.08      | 5.9                | 4.1                                   | 3.4           | 2.1       | 19.32              | 12.01             |  |  |  |  |  |
| 40.1            | 0.0                               | 0.0                          |                  | 5.29      | 7.9                | 5.5                                   | 4.6           | 2.8       | 25.83              | 16.06             |  |  |  |  |  |
| 49.6            | 0.0                               | 0.0                          |                  | 4.27      | 9.7                | 6.8                                   | 5.7           | 3.5       | 31.94              | 19.86             |  |  |  |  |  |
| 58.2            | 0.0                               | 0.0                          |                  | 3.64      | 11.4               | 7.9                                   | 6.7           | 4.1       | 37.48              | 23.31             |  |  |  |  |  |
| 68.4<br>81.4    | 0.0                               | 0.0                          |                  | 3.10      | 13                 | 9.5                                   | /.8           | 4.8       | 44.05              | 27.39             |  |  |  |  |  |
| 94.3            | 0.0                               | 0.0                          |                  | 2.25      | 18                 | 13                                    | 10.8          | 6.7       | 60.73              | 37.77             |  |  |  |  |  |
| 112             | 0.0                               | 0.0                          |                  | 1.90      | 22                 | 15                                    | 13            | 7.9       | 72.13              | 44.85             |  |  |  |  |  |
| 130             | 0.0                               | 0.0                          |                  | 1.63      | 25                 | 18                                    | 15            | 9.2       | 83.73              | 52.06             |  |  |  |  |  |
| 154             | 0.0                               | 0.0                          |                  | 1.38      | 30                 | 21                                    | 18            | 10.9      | 99.18              | 61.67             |  |  |  |  |  |
| 182             | 1.4                               | 1.4                          |                  | 1.17      | 36                 | 25                                    | 21            | 13        | 117.22             | 72.89             |  |  |  |  |  |
| 213             | 2.2                               | 5.4                          |                  | 0.855     | 42                 | 34                                    | 24            | 18        | 159.7              | 99.32             |  |  |  |  |  |
| 292             | 2.4                               | 7.8                          |                  | 0.725     | 57                 | 40                                    | 33            | 21        | 188.1              | 116.94            |  |  |  |  |  |
| 344             | 2.0                               | 9.8                          |                  | 0.616     | 67                 | 47                                    | 39            | 24        | 221.6              | 137.8             |  |  |  |  |  |
| 403             | 1.7                               | 11.5                         |                  | 0.526     | 79                 | 55                                    | 46            | 29        | 259.5              | 161.4             |  |  |  |  |  |
| 4/3             | 1.5                               | 13.0                         |                  | 0.448     | 93                 | 64<br>76                              | 54            | 34        | 304.6              | 189.4             |  |  |  |  |  |
| 648             | 1.4                               | 14.4                         |                  | 0.382     | 109                | 76<br>88                              | 74            | 39<br>46  | 417.3              | 222.5             |  |  |  |  |  |
| 759             | 1.3                               | 17.0                         |                  | 0.279     | 149                | 103                                   | 87            | 54        | 488.8              | 304.0             |  |  |  |  |  |
| 888             | 1.3                               | 18.3                         |                  | 0.239     | 174                | 121                                   | 102           | 63        | 571.9              | 355.6             |  |  |  |  |  |
| 1048            | 1.3                               | 19.6                         |                  | 0.202     | 205                | 143                                   | 120           | 74        | 675.0              | 419.7             |  |  |  |  |  |
| 1230            | 1.3                               | 20.8                         |                  | 0.172     | 241                | 167                                   | 141           | 8/        | 792.2              | 492.6             |  |  |  |  |  |
| 1437            | 1.2                               | 22.1                         |                  | 0.148     | 331                | 230                                   | 193           | 102       | 925.5              | 676.4             |  |  |  |  |  |
| 1829            | 1.1                               | 23.9                         |                  | 0.116     | 359                | 249                                   | 209           | 130       | 1178               | 732.5             |  |  |  |  |  |
| 2143            | 1.3                               | 25.2                         |                  | 0.0989    | 420                | 292                                   | 245           | 152       | 1380               | 858.2             |  |  |  |  |  |
| 2510            | 1.3                               | 26.6                         |                  | 0.0845    | 492                | 342                                   | 287           | 178       | 1617               | 1005.2            |  |  |  |  |  |
| 2944            | 1.4                               | 28.0                         |                  | 0.0720    | 577                | 401                                   | 337           | 209       | 2221               | 1381              |  |  |  |  |  |
| 4043            | 1.4                               | 31.0                         |                  | 0.0524    | 793                | 551                                   | 463           | 244       | 2604               | 1619              |  |  |  |  |  |
| 4732            | 2.3                               | 33.4                         |                  | 0.0448    | 928                | 644                                   | 542           | 335       | 3048               | 1895              |  |  |  |  |  |
| 5116            | 1.8                               | 34.3                         |                  | 0.0414    | 1003               | 697                                   | 585           | 362       | 3295               | 2049              |  |  |  |  |  |
| 6004            | 2.0                               | 36.4                         |                  | 0.0353    | 1177               | 818                                   | 687           | 425       | 3867               | 2405              |  |  |  |  |  |
| 7032            | 2.4                               | 38.7                         |                  | 0.0301    | 13/9               | 958                                   | 805           | 498       | 4529               | 2816              |  |  |  |  |  |
| 8926            | 3.2                               | 40.9                         |                  | 0.0208    | 1750               | 1215                                  | 1022          | 632       | 5749               | 3575              |  |  |  |  |  |
| 9663            | 2.9                               | 47.1                         |                  | 0.0219    | 1895               | 1316                                  | 1106          | 685       | 6223               | 3870              |  |  |  |  |  |
| 10465           | 3.7                               | 50.8                         |                  | 0.0203    | 2052               | 1425                                  | 1198          | 741       | 6740               | 4191              |  |  |  |  |  |
| 12296           | 9.9                               | 60.6                         |                  | 0.0172    | 2411               | 1674                                  | 1407          | 871       | 7919               | 4924              |  |  |  |  |  |
| 1434/           | 10.2                              | 70.9                         |                  | 0.0148    | 2813               | 1954                                  | 1642          | 1016      | 9240               | 5/46              |  |  |  |  |  |
| 18496           | 5.8                               | 84.6                         |                  | 0.0129    | 3627               | 2519                                  | 2117          | 1310      | 11912              | 7407              |  |  |  |  |  |
| 20495           | 4.6                               | 89.2                         |                  | 0.0103    | 4019               | 2791                                  | 2345          | 1452      | 13200              | 8208              |  |  |  |  |  |
| 23155           | 4.3                               | 93.5                         |                  | 0.0092    | 4540               | 3153                                  | 2650          | 1640      | 14913              | 9273              |  |  |  |  |  |
| 25069           | 2.4                               | 95.9                         |                  | 0.0085    | 4915               | 3414                                  | 2869          | 1776      | 16146              | 10040             |  |  |  |  |  |
| 27139           | 2.0                               | 97.9                         |                  | 0.0078    | 5321               | 3695                                  | 5106          | 1923      | 1/479              | 10869             |  |  |  |  |  |
| 31807           | 1.2                               | 99.1<br>99.7                 |                  | 0.0072    | 6237               | 4331                                  | 3640          | 2253      | 20485              | 12738             |  |  |  |  |  |
| 34425           | 0.3                               | 99.9                         |                  | 0.0062    | 6750               | 4688                                  | 3940          | 2439      | 22171              | 13787             |  |  |  |  |  |
| 37194           | 0.1                               | 100.0                        |                  | 0.0057    | 7293               | 5065                                  | 4257          | 2635      | 23955              | 14896             |  |  |  |  |  |
| 40342           | 0.0                               | 100.0                        |                  | 0.0053    | 7910               | 5493                                  | 4617          | 2858      | 25982              | 16156             |  |  |  |  |  |
| 43593           | 0.0                               | 100.0                        |                  | 0.0049    | 8548               | 5936                                  | 4989          | 3088      | 28076              | 17458             |  |  |  |  |  |
| 51166           | 0.0                               | 100.0                        |                  | 0.0045    | 10033              | 6967                                  | 5856          | 3625      | 32953              | 20491             |  |  |  |  |  |
| 55381           | 0.0                               | 100.0                        |                  | 0.0038    | 10859              | 7541                                  | 6338          | 3923      | 35668              | 22179             |  |  |  |  |  |
| 59876           | 0.0                               | 100.0                        |                  | 0.0035    | 11740              | 8153                                  | 6852          | 4242      | 38563              | 23980             |  |  |  |  |  |



(B) Capillary Pressure Plot



(C) Pore Size Distribution plot

| Well   |       |  |
|--------|-------|--|
| Sample | Depth |  |

Groper-2 747.86 m



| Client              | Geoscience Vic | toria                |                 |                  |                  |           |                    | Conversion Parameters    |         |           |                   |                   |  |  |
|---------------------|----------------|----------------------|-----------------|------------------|------------------|-----------|--------------------|--------------------------|---------|-----------|-------------------|-------------------|--|--|
| Well                | Groper_?       |                      |                 |                  |                  |           |                    |                          |         | air/water | air/oil           | oil/water         |  |  |
|                     | 5.0pm -        |                      |                 |                  |                  |           | Laboratory Theta   |                          |         | 0.0       | 0.0               | 30.0              |  |  |
| Test Method         | Air/Mercury Cs | millary Pressure Dr  | ainana          |                  |                  |           | Laboratory IFT     |                          |         | 72.0      | 24.0              | 48.0              |  |  |
| i cat intenioù      | in mereary ee  | ipinary riessare isi | uniuge          |                  |                  |           | Reservoir Theta    |                          |         | 0.0       | 21.0              | 30.0              |  |  |
| Sample              | Groper-2       |                      |                 | Ambiant Barmas   | hilite           |           | Reservoir IFT      |                          |         | 50.0      |                   | 30.0              |  |  |
| Donth               | 747.86         |                      |                 | Ambient Permea   | binty            |           | Laboratory Taoal   | Thata                    |         | 72.0      | 24.0              | 42.0              |  |  |
| Deptii              | /4/.00         |                      |                 | Ambient i orosit | y                |           | Databolatory TCOST | neta                     |         | 72.0      | 24.0              | 42.0              |  |  |
| a sea and is a form | 7              |                      |                 |                  |                  |           | Reservoir TCOSTI   | ieta                     | 4       | 30.0      |                   | 20.0              |  |  |
| pore radius (µm     |                | (                    | In: 1 (n        | 6.15             | 71 1 115         |           | L                  | ensity Gradients, psi/io |         | +         |                   |                   |  |  |
| 2.330               | Entry Pressure | (psia)               | Displacement Pl | essure (psia)    | Threshold Pressu | re (psia) | W7 /               | ŀ                        | Typical | ł         |                   |                   |  |  |
| System              | Lab<br>41.7    | Resv                 | Lab<br>54.7     | Resv             | 151              | Resv      | water.             |                          | 0.440   |           |                   |                   |  |  |
| A-lig<br>C W        | 41.7           | 5.7                  | 10.7            | 7.6              | 20.6             | 20.6      | C                  |                          | 0.550   |           |                   |                   |  |  |
| 0-W                 | 0.2            | 3.7                  | 2.6             | 2.0              | 29.0             | 20.0      | Gas.               |                          | 0.100   | 1         |                   |                   |  |  |
| 0-11                | 2.7            | 5.0                  | 5.0             | 3.9              | 7.7              | 10.7      | 1                  |                          |         |           |                   |                   |  |  |
|                     |                |                      |                 |                  |                  |           |                    |                          |         |           |                   |                   |  |  |
|                     |                |                      |                 |                  |                  | Pore      | Equivalent         | Injection Pressures      |         |           | Height Above Free | Height Above Free |  |  |
| Pressure            |                | Intrusion            |                 | Saturation       |                  | Diameter  | A/B Lab            | A/B Res                  | O/B Lab | O/B Res   | Water (feet)      | Water (feet)      |  |  |
| (psia)              |                | (percent)            |                 | (percent)        |                  | (µm)      |                    |                          |         |           | Oil-Water         | Gas-Water         |  |  |
|                     |                |                      |                 |                  |                  |           |                    |                          |         |           |                   |                   |  |  |
|                     |                |                      |                 |                  |                  |           |                    |                          |         |           |                   |                   |  |  |
| 1.01                |                | 0.0                  |                 | 0.0              |                  | 209       | 0.20               | 0.14                     | 0.12    | 0.07      | 0.65              | 0.40              |  |  |
| 1.99                |                | 0.0                  |                 | 0.0              |                  | 107       | 0.39               | 0.27                     | 0.23    | 0.14      | 1.28              | 0.80              |  |  |
| 2.74                |                | 0.0                  |                 | 0.0              |                  | 77.4      | 0.54               | 0.37                     | 0.31    | 0.19      | 1.76              | 1.10              |  |  |
| 3.19                |                | 0.0                  |                 | 0.0              |                  | 66.5      | 0.63               | 0.43                     | 0.37    | 0.23      | 2.05              | 1.28              |  |  |
| 3.74                |                | 0.0                  |                 | 0.0              |                  | 56.7      | 0.73               | 0.51                     | 0.43    | 0.26      | 2.41              | 1.50              |  |  |
| 4.39                |                | 0.0                  |                 | 0.0              |                  | 48.3      | 0.86               | 0.60                     | 0.50    | 0.31      | 2.83              | 1.76              |  |  |
| 5.19                |                | 0.0                  |                 | 0.0              |                  | 40.9      | 1.02               | 0.71                     | 0.59    | 0.37      | 3.34              | 2.08              |  |  |
| 5.98                |                | 0.0                  |                 | 0.0              |                  | 35.4      | 1.2                | 0.81                     | 0.08    | 0.42      | 5.85              | 2.39              |  |  |
| 0.98                |                | 0.0                  |                 | 0.0              |                  | 30.4      | 1.4                | 0.95                     | 0.60    | 0.49      | 4.50              | 2.80              |  |  |
| 0.28                |                | 0.0                  |                 | 0.0              |                  | 23.0      | 1.0                | 1.15                     | 0.95    | 0.59      | 5.55              | 3.32              |  |  |
| 9.98                |                | 0.0                  |                 | 0.0              |                  | 21.2      | 2.0                | 1.4                      | 1.14    | 0.71      | 7.41              | 4.00              |  |  |
| 11.5                |                | 0.0                  |                 | 0.0              |                  | 16.5      | 2.5                | 1.0                      | 1.3     | 0.06      | 2.41              | +.01              |  |  |
| 15.5                |                | 0.0                  |                 | 0.0              |                  | 13./      | 2.0                | 1.0                      | 1.5     | 1.10      | 0.09              | 6.21              |  |  |
| 13.5                |                | 0.0                  |                 | 0.0              |                  | 13.7      | 3.0                | 2.1                      | 1.0     | 1.10      | 9.98              | 0.21              |  |  |
| 18.3                |                | 0.0                  |                 | 0.0              |                  | 11.5      | 3.0                | 2.3                      | 2.1     | 1.5       | 12.01             | 2.41              |  |  |
| 21.0                |                | 0.0                  |                 | 0.0              |                  | 9.03      | 4.2                | 2.9                      | 2.5     | 1.5       | 16.20             | 10.12             |  |  |
| 30.0                |                | 0.0                  |                 | 0.0              |                  | 7.08      | 5.0                | 4.1                      | 3.4     | 2.1       | 10.29             | 12.01             |  |  |
| 30.5                |                | 0.0                  |                 | 0.0              |                  | 5 37      | 77                 | 5.4                      | 4.5     | 2.1       | 25.44             | 15.82             |  |  |
| 49.5                |                | 0.3                  |                 | 0.0              |                  | 4 29      | 97                 | 67                       | 57      | 3.5       | 31.88             | 19.82             |  |  |
| 59.4                |                | 1.2                  |                 | 2.2              |                  | 3.57      | 11.6               | 81                       | 6.8     | 4.2       | 38.26             | 23.79             |  |  |
| 69.2                |                | 2.5                  |                 | 47               |                  | 3.07      | 14                 | 9.4                      | 79      | 4.9       | 44 57             | 27.71             |  |  |
| 80.8                |                | 3.4                  |                 | 8.1              |                  | 2.62      | 16                 | 11.0                     | 9.2     | 5.7       | 52.04             | 32.36             |  |  |
| 94.7                |                | 3.0                  |                 | 11.1             |                  | 2.24      | 19                 | 13                       | 10.8    | 6.7       | 60.99             | 37.93             |  |  |
| 113                 |                | 4.0                  |                 | 15.1             |                  | 1.87      | 22                 | 15                       | 13      | 8.0       | 72.78             | 45.26             |  |  |
| 132                 |                | 3.5                  |                 | 18.6             |                  | 1.61      | 26                 | 18                       | 15      | 9.4       | 85.01             | 52.86             |  |  |
| 156                 |                | 3.7                  |                 | 22.3             |                  | 1.36      | 31                 | 21                       | 18      | 11.1      | 100.47            | 62.48             |  |  |
| 183                 |                | 3.4                  |                 | 25.7             |                  | 1.16      | 36                 | 25                       | 21      | 13        | 117.86            | 73.29             |  |  |
| 212                 |                | 2.9                  |                 | 28.6             |                  | 0.999     | 42                 | 29                       | 24      | 15        | 136.5             | 84.90             |  |  |
| 246                 |                | 2.6                  |                 | 31.2             |                  | 0.861     | 48                 | 33                       | 28      | 17        | 158.4             | 98.52             |  |  |
| 293                 |                | 2.8                  |                 | 34.0             |                  | 0.723     | 57                 | 40                       | 34      | 21        | 188.7             | 117.34            |  |  |
| 345                 |                | 2.3                  |                 | 36.3             |                  | 0.615     | 68                 | 4/                       | 39      | 24        | 222.2             | 138.2             |  |  |
| 403                 |                | 1.8                  |                 | 38.1             |                  | 0.527     | /9                 | 55                       | 46      | 29        | 259.5             | 161.4             |  |  |
| 473                 |                | 2.1                  |                 | 40.2             |                  | 0.448     | 100                | 76                       | 54      | 34        | 259 1             | 222.7             |  |  |
| 649                 |                | 1.8                  |                 | 43.0             |                  | 0.327     | 107                | 88                       | 74      | 16        | 418.0             | 250.0             |  |  |
| 758                 |                | 1.8                  |                 | 45.7             |                  | 0.280     | 149                | 103                      | 87      | 54        | 488.2             | 303.6             |  |  |
| 888                 |                | 1.8                  |                 | 47.5             |                  | 0.239     | 174                | 121                      | 102     | 63        | 571.9             | 355.6             |  |  |
| 1048                |                | 1.8                  |                 | 49.3             |                  | 0.202     | 205                | 143                      | 120     | 74        | 675.0             | 419.7             |  |  |
| 1228                |                | 1.7                  |                 | 51.0             |                  | 0.173     | 241                | 167                      | 141     | 87        | 790.9             | 491.8             |  |  |
| 1437                |                | 1.7                  |                 | 52.7             |                  | 0.148     | 282                | 196                      | 164     | 102       | 925.5             | 575.5             |  |  |
| 1688                |                | 1.9                  |                 | 54.6             |                  | 0.126     | 331                | 230                      | 193     | 120       | 1087.1            | 676.0             |  |  |
| 1827                |                | 1.5                  |                 | 55.5             |                  | 0.116     | 358                | 249                      | 209     | 129       | 1177              | 731.7             |  |  |
| 2143                |                | 1.8                  |                 | 57.4             |                  | 0.0989    | 420                | 292                      | 245     | 152       | 1380              | 858.2             |  |  |
| 2508                |                | 1.9                  |                 | 59.2             |                  | 0.0845    | 492                | 342                      | 287     | 178       | 1615              | 1004.4            |  |  |
| 2943                |                | 2.0                  |                 | 61.2             |                  | 0.0720    | 5//                | 401                      | 33/     | 208       | 1895              | 11/9              |  |  |
| 5449<br>4042        |                | 1.9                  |                 | 63.1             |                  | 0.0015    | 702                | 4/0                      | 393     | 244       | 2221              | 1561              |  |  |
| 4045                |                | 2.8                  |                 | 67.7             |                  | 0.0524    | 928                | 645                      | 542     | 200       | 3049              | 1896              |  |  |
| 5117                |                | 1.8                  |                 | 68.7             |                  | 0.0414    | 1003               | 697                      | 586     | 363       | 3296              | 2049              |  |  |
| 6002                |                | 1.7                  |                 | 70.4             |                  | 0.0353    | 1177               | 817                      | 687     | 425       | 3866              | 2404              |  |  |
| 7032                |                | 2.5                  |                 | 72.9             |                  | 0.0301    | 1379               | 958                      | 805     | 498       | 4529              | 2816              |  |  |
| 7896                |                | 2.3                  |                 | 75.2             |                  | 0.0268    | 1548               | 1075                     | 904     | 559       | 5085              | 3162              |  |  |
| 8927                |                | 2.4                  |                 | 77.6             |                  | 0.0237    | 1750               | 1216                     | 1022    | 632       | 5749              | 3575              |  |  |
| 9662                |                | 1.5                  |                 | 79.2             |                  | 0.0219    | 1895               | 1316                     | 1106    | 685       | 6223              | 3870              |  |  |
| 10465               |                | 1.8                  |                 | 80.9             |                  | 0.0203    | 2052               | 1425                     | 1198    | 741       | 6740              | 4191              |  |  |
| 12296               |                | 3.3                  |                 | 84.2             |                  | 0.0172    | 2411               | 1674                     | 1407    | 871       | 7919              | 4924              |  |  |
| 14346               |                | 2.5                  |                 | 86.7             |                  | 0.0148    | 2813               | 1953                     | 1642    | 1016      | 9239              | 5745              |  |  |
| 16396               |                | 1.8                  |                 | 88.5             |                  | 0.0129    | 3215               | 2233                     | 1876    | 1162      | 10560             | 6566              |  |  |
| 18495               |                | 1.2                  |                 | 89.7             |                  | 0.0115    | 3626               | 2518                     | 2117    | 1310      | 11912             | 7407              |  |  |
| 20497               |                | 1.7                  |                 | 91.4             |                  | 0.0103    | 4019               | 2791                     | 2346    | 1452      | 13201             | 8209              |  |  |
| 23154               |                | 0.8                  |                 | 92.2             |                  | 0.0092    | 4540               | 3153                     | 2650    | 1640      | 14912             | 9273              |  |  |
| 25069               |                | 1.0                  |                 | 93.2             |                  | 0.0085    | 4915               | 3414                     | 2869    | 1776      | 16146             | 10040             |  |  |
| 27137               |                | 1.0                  |                 | 94.2             |                  | 0.0078    | 5321               | 3695                     | 3106    | 1923      | 17477             | 10868             |  |  |
| 29382               |                | 1.0                  |                 | 95.3             |                  | 0.0072    | 5761               | 4001                     | 3363    | 2082      | 18923             | 11767             |  |  |
| 31806               |                | 0.7                  |                 | 96.0             |                  | 0.0067    | 6236               | 4331                     | 3640    | 2253      | 20484             | 12/38             |  |  |
| 34427               |                | 1.1                  |                 | 97.1             |                  | 0.0062    | 0/50               | 4088                     | 3940    | 2439      | 22172             | 13/88             |  |  |
| 3/195               |                | 0.4                  |                 | 97.4             |                  | 0.0057    | /293               | 5065                     | 4257    | 2635      | 23955             | 14896             |  |  |
| 40346               |                | 1.0                  |                 | 98.5             |                  | 0.0053    | /911               | 5026                     | 401/    | 2838      | 23985             | 10138             |  |  |
| 43393               |                | 0.7                  |                 | 99.1             |                  | 0.0049    | 9274               | 6440                     | 4789    | 3351      | 20077             | 1/439             |  |  |
| 51173               |                | 0.3                  |                 | 99.8             |                  | 0.0041    | 10034              | 6968                     | 5856    | 3625      | 32958             | 20494             |  |  |
| 55384               |                | 0.2                  |                 | 99.9             |                  | 0.0038    | 10860              | 7541                     | 6338    | 3924      | 35670             | 22181             |  |  |
| 59893               |                | 0.1                  |                 | 100.0            |                  | 0.0035    | 11744              | 8155                     | 6854    | 4243      | 38574             | 23986             |  |  |



(B) Capillary Pressure Plot



(C) Pore Size Distribution plot

## WellHSample Depth3



Hunters Lane-1 377.00 m

| Well               | Hunters Lane-1     | na                     |                |                         |             |                          |                       |                                | Conversion   | air/water    | air/oil                                        | oil/water                                      |
|--------------------|--------------------|------------------------|----------------|-------------------------|-------------|--------------------------|-----------------------|--------------------------------|--------------|--------------|------------------------------------------------|------------------------------------------------|
| Test Method        | Air/Mercury Con    | llary Procence De      | inana          |                         |             |                          | Laboratory Theta      |                                |              | 0.0          | 0.0                                            | 30.0                                           |
| r cor method       | An / wiercury Capi | y r ressure Dra        |                |                         |             |                          | Reservoir Theta       |                                |              | 0.0          | 24.0                                           | 48.0                                           |
| Sample<br>Depth    | Hunters Lane -1    | m                      |                | Ambient Permea          | bility      |                          | Reservoir IFT         | heta                           |              | 50.0         | 24.0                                           | 30.0                                           |
| hun                | 5,1,00             |                        |                | oren rorosit            | ,           |                          | Reservoir TcosTh      | eta                            |              | 50.0         | 24.0                                           | 26.0                                           |
| pore radius (µm)   | Entry Process      | sia)                   | Displacement P | ssure (poin)            | Threehold D | e (nsia)                 | D                     | ensity Gradients, psi/f        | Tunia-1      |              |                                                |                                                |
| 2.000<br>System    | Lab                | Resv                   | Lab            | Resv                    | Lab         | Resv                     | Water:                | ŀ                              | 0.440        |              |                                                |                                                |
| A-Hg<br>G-W        | 58.2               | - 7 2                  | 142.6          | - 17 9                  | 182.1       | 22.7                     | Oil:<br>Gas:          |                                | 0.330        |              |                                                |                                                |
| 0-W                | 3.5                | 3.8                    | 8.5            | 9.2                     | 10.9        | 11.8                     | Gdð.                  |                                | 0.100        | l            |                                                |                                                |
|                    |                    |                        |                |                         |             |                          |                       |                                |              |              |                                                |                                                |
| Pressure<br>(psia) |                    | Intrusion<br>(percent) |                | Saturation<br>(percent) |             | Pore<br>Diameter<br>(µm) | Equivalent<br>A/B Lab | Injection Pressures<br>A/B Res | O/B Lab      | O/B Res      | Height Above Free<br>Water (feet)<br>Oil-Water | Height Above Free<br>Water (feet)<br>Gas-Water |
|                    |                    |                        |                |                         |             |                          |                       |                                |              |              |                                                |                                                |
| 1.01               |                    | 0.0                    |                | 0.0                     |             | 209                      | 0.20                  | 0.14                           | 0.12         | 0.07         | 0.65                                           | 0.40                                           |
| 1.99               |                    | 0.0                    |                | 0.0                     |             | 107<br>77 4              | 0.39                  | 0.27                           | 0.23         | 0.14         | 1.28                                           | 0.80                                           |
| 3.19               |                    | 0.0                    |                | 0.0                     |             | 66.5                     | 0.63                  | 0.43                           | 0.37         | 0.23         | 2.05                                           | 1.28                                           |
| 3.74               |                    | 0.0                    |                | 0.0                     |             | 56.7                     | 0.73                  | 0.51                           | 0.43         | 0.26         | 2.41                                           | 1.50                                           |
| 4.39               |                    | 0.0                    |                | 0.0                     |             | 48.5<br>40.9             | 1.02                  | 0.71                           | 0.50         | 0.31         | 2.83                                           | 2.08                                           |
| 5.98               |                    | 0.0                    |                | 0.0                     |             | 35.4                     | 1.2                   | 0.81                           | 0.68         | 0.42         | 3.85                                           | 2.39                                           |
| 6.98<br>8.28       |                    | 0.0                    |                | 0.0                     |             | 30.4<br>25.6             | 1.4                   | 0.95                           | 0.80         | 0.49         | 4.50<br>5.33                                   | 2.80                                           |
| 9.98               |                    | 0.0                    |                | 0.0                     |             | 21.2                     | 2.0                   | 1.13                           | 1.14         | 0.71         | 6.43                                           | 4.00                                           |
| 11.5               |                    | 0.0                    |                | 0.0                     |             | 18.5                     | 2.3                   | 1.6                            | 1.3          | 0.81         | 7.41                                           | 4.61                                           |
| 13.5               |                    | 0.0                    |                | 0.0                     |             | 15.7<br>13.7             | 2.6<br>3.0            | 1.8 2.1                        | 1.5<br>1.8   | 0.96<br>1.10 | 8.69<br>9.98                                   | 5.41<br>6.21                                   |
| 18.5               |                    | 0.0                    |                | 0.0                     |             | 11.5                     | 3.6                   | 2.5                            | 2.1          | 1.3          | 11.91                                          | 7.41                                           |
| 21.6               |                    | 0.0                    |                | 0.0                     |             | 9.83                     | 4.2                   | 2.9                            | 2.5          | 1.5          | 13.91                                          | 8.65                                           |
| 25.3<br>30.0       |                    | 0.0                    |                | 0.0                     |             | 8.39                     | 5.0                   | 5.4<br>4.1                     | 2.9<br>3.4   | 2.1          | 19.32                                          | 12.01                                          |
| 39.7               |                    | 0.0                    |                | 0.0                     |             | 5.34                     | 7.8                   | 5.4                            | 4.5          | 2.8          | 25.57                                          | 15.90                                          |
| 49.7<br>59.6       |                    | 0.0                    |                | 0.0                     |             | 4.27                     | 9.7<br>11.7           | 6.8<br>8.1                     | 5.7<br>6.8   | 3.5<br>4.2   | 32.01<br>38.38                                 | 19.90<br>23.87                                 |
| 69.5               |                    | 1.2                    |                | 1.9                     |             | 3.05                     | 14                    | 9.5                            | 8.0          | 4.9          | 44.76                                          | 27.83                                          |
| 81.2               |                    | 1.5                    |                | 3.4                     |             | 2.61                     | 16                    | 11.1                           | 9.3          | 5.8          | 52.30                                          | 32.52                                          |
| 95.0               |                    | 2.0                    |                | 4.8                     |             | 2.23                     | 22                    | 15                             | 13           | 8.1          | 73.42                                          | 45.66                                          |
| 132                |                    | 1.8                    |                | 8.6                     |             | 1.60                     | 26                    | 18                             | 15           | 9.4          | 85.01                                          | 52.86                                          |
| 156                |                    | 2.3                    |                | 11.0                    |             | 1.35                     | 31                    | 21                             | 18           | 11.1         | 100.47                                         | 62.48<br>73.29                                 |
| 213                |                    | 3.3                    |                | 17.0                    |             | 0.997                    | 42                    | 29                             | 24           | 15           | 137.2                                          | 85.30                                          |
| 247                |                    | 4.3                    |                | 21.4                    |             | 0.860                    | 48                    | 34                             | 28           | 17           | 159.1                                          | 98.92                                          |
| 294<br>345         |                    | 6.2                    |                | 33.7                    |             | 0.722                    | 58<br>68              | 40<br>47                       | 34<br>39     | 21           | 222.2                                          | 117.74 138.2                                   |
| 403                |                    | 5.3                    |                | 39.0                    |             | 0.527                    | 79                    | 55                             | 46           | 29           | 259.5                                          | 161.4                                          |
| 473                |                    | 6.9<br>7 2             |                | 46.0<br>53.1            |             | 0.449                    | 93<br>109             | 64<br>76                       | 54<br>64     | 34<br>39     | 304.6<br>357.4                                 | 189.4                                          |
| 648                |                    | 6.9                    |                | 60.1                    |             | 0.327                    | 127                   | 88                             | 74           | 46           | 417.3                                          | 259.5                                          |
| 757                |                    | 7.5                    |                | 67.6                    |             | 0.280                    | 148                   | 103                            | 87           | 54           | 487.5                                          | 303.2                                          |
| 887                |                    | 7.6<br>7.6             |                | /5.2<br>82.8            |             | 0.239                    | 205                   | 121<br>143                     | 102          | 63<br>74     | 571.3                                          | 355.2<br>419.3                                 |
| 1227               |                    | 6.7                    |                | 89.5                    |             | 0.173                    | 241                   | 167                            | 140          | 87           | 790.2                                          | 491.4                                          |
| 1435               |                    | 6.0                    |                | 95.5                    |             | 0.148                    | 281                   | 195                            | 164          | 102          | 924.2                                          | 574.7<br>675.2                                 |
| 1825               |                    | 1.6                    |                | 99.1                    |             | 0.120                    | 358                   | 249                            | 209          | 129          | 1175                                           | 730.9                                          |
| 2141               |                    | 0.4                    |                | 99.5                    |             | 0.0990                   | 420                   | 292                            | 245          | 152          | 1379                                           | 857.4                                          |
| 2506               |                    | 0.3                    |                | 99.7<br>100.0           |             | 0.0846                   | 491<br>577            | 400                            | 28/<br>337   | 208          | 1894                                           | 1178                                           |
| 3447               |                    | 0.0                    |                | 100.0                   |             | 0.0615                   | 676                   | 469                            | 394          | 244          | 2220                                           | 1380                                           |
| 4041<br>4732       |                    | 0.0                    |                | 100.0                   |             | 0.0525                   | 792<br>928            | 550<br>644                     | 462<br>542   | 286          | 2603<br>3048                                   | 1618<br>1895                                   |
| 5115               |                    | 0.0                    |                | 100.0                   |             | 0.0414                   | 1003                  | 696                            | 585          | 362          | 3294                                           | 2048                                           |
| 6000               |                    | 0.0                    |                | 100.0                   |             | 0.0353                   | 1176                  | 817                            | 687<br>805   | 425          | 3864                                           | 2403                                           |
| 7895               |                    | 0.0                    |                | 100.0                   |             | 0.0302                   | 1579                  | 1075                           | 904          | 559          | 4328                                           | 3162                                           |
| 8926               |                    | 0.0                    |                | 100.0                   |             | 0.0238                   | 1750                  | 1215                           | 1022         | 632          | 5749                                           | 3575                                           |
| 9661<br>10463      |                    | 0.0                    |                | 100.0                   |             | 0.0219                   | 1894<br>2052          | 1315                           | 1106         | 684<br>741   | 6222                                           | 3869<br>4190                                   |
| 12295              |                    | 0.0                    |                | 100.0                   |             | 0.0172                   | 2411                  | 1674                           | 1407         | 871          | 7919                                           | 4924                                           |
| 14345              |                    | 0.0                    |                | 100.0                   |             | 0.0148                   | 2813                  | 1953                           | 1642         | 1016         | 9239                                           | 5745                                           |
| 18494              |                    | 0.0                    |                | 100.0                   |             | 0.0129                   | 3626                  | 2518                           | 2116         | 1310         | 11911                                          | 7407                                           |
| 20496              |                    | 0.0                    |                | 100.0                   |             | 0.0103                   | 4019                  | 2791                           | 2346         | 1452         | 13200                                          | 8208                                           |
| 23153<br>25068     |                    | 0.0                    |                | 100.0                   |             | 0.0092                   | 4540<br>4915          | 3153<br>3413                   | 2650<br>2869 | 1640<br>1776 | 14912                                          | 9272<br>10039                                  |
| 27136              |                    | 0.0                    |                | 100.0                   |             | 0.0078                   | 5321                  | 3695                           | 3105         | 1922         | 17477                                          | 10868                                          |
| 29381              |                    | 0.0                    |                | 100.0                   |             | 0.0072                   | 5761                  | 4001                           | 3362         | 2081         | 18923                                          | 11767                                          |
| 31805              |                    | 0.0                    |                | 100.0                   |             | 0.0067                   | 6750                  | 4551 4688                      | 3940         | 2439         | 20484 22172                                    | 12/3/<br>13787                                 |
| 37195              |                    | 0.0                    |                | 100.0                   |             | 0.0057                   | 7293                  | 5065                           | 4257         | 2635         | 23955                                          | 14896                                          |
| 40346              |                    | 0.0                    |                | 100.0                   |             | 0.0053                   | 7911                  | 5494<br>5936                   | 4617<br>4989 | 2858         | 25985                                          | 16158                                          |
| 47295              |                    | 0.0                    |                | 100.0                   |             | 0.0049                   | 9274                  | 6440                           | 5413         | 3351         | 30460                                          | 18941                                          |
| 51172              |                    | 0.0                    |                | 100.0                   |             | 0.0041                   | 10034                 | 6968                           | 5856         | 3625         | 32957                                          | 20494                                          |
| 55384<br>59893     |                    | 0.0                    |                | 100.0                   |             | 0.0038                   | 10860                 | /541<br>8155                   | 6338<br>6854 | 3924<br>4243 | 356/0<br>38574                                 | 22181<br>23986                                 |



(B) Capillary Pressure Plot



(C) Pore Size Distribution plot

| Well   |       |
|--------|-------|
| Sample | Depth |

Kingfish-3 2143.05 m



| Client           | Geoscience Victo   | ria              |                  |                 |                  |           |                  |                                 | Conversio    | on Parameters |                   |                   |
|------------------|--------------------|------------------|------------------|-----------------|------------------|-----------|------------------|---------------------------------|--------------|---------------|-------------------|-------------------|
| Well             | Kingfish-3         |                  |                  |                 |                  |           |                  |                                 |              | air/water     | air/oil           | oil/water         |
| T                | Air/Marrie C       | llan Dra         | ainaga           |                 |                  |           | Laboratory Theta |                                 |              | 0.0           | 0.0               | 30.0              |
| i est Method     | An/mercury Capi    | naty riessure Dr | amage            |                 |                  |           | Reservoir Theta  |                                 |              | 0.0           | 24.0              | 48.0              |
| Sample           | Kingfish-3         |                  |                  | Ambient Perme   | ability          |           | Reservoir IFT    |                                 |              | 50.0          |                   | 30.0              |
| Depth            | 2143.05            | m                |                  | Ambient Porosit | y .              |           | Laboratory TcosT | Theta                           |              | 72.0          | 24.0              | 42.0              |
| nore radius (um) | 7                  |                  |                  |                 |                  |           | Reservoir TcosTh | ieta<br>Iensity Gradiante pri/f | not          | 50.0          | 1                 | 26.0              |
| 0.063            | Entry Pressure (ps | sia)             | Displacement Pro | essure (psia)   | Threshold Pressu | re (psia) |                  | cusity Gradients, psi/i         | Typical      | 4             |                   |                   |
| System           | Lab                | Resv             | Lab              | Resv            | Lab              | Resv      | Water:           |                                 | 0.440        | 1             |                   |                   |
| A-Hg             | 1703               | -                | 2866             | - 200 5         | 3730             | -         | Oil:             |                                 | 0.330        |               |                   |                   |
| O-W              | 111.4              | 120.6            | 187.4            | 203.0           | 243.9            | 264.3     | Gas.             |                                 | 0.100        | 4             |                   |                   |
|                  |                    |                  |                  |                 |                  |           | •                |                                 |              |               |                   |                   |
|                  |                    |                  |                  |                 |                  | Pore      | Equivalent       | Injection Pressures             |              |               | Height Above Free | Height Above Free |
| Pressure         |                    | Intrusion        |                  | Saturation      |                  | Diameter  | A/B Lab          | A/B Res                         | O/B Lab      | O/B Res       | Water (feet)      | Water (feet)      |
| (psia)           |                    | (percent)        |                  | (percent)       |                  | (µ11)     |                  |                                 |              |               | Oil-water         | Gas-water         |
|                  |                    |                  |                  |                 |                  |           |                  |                                 |              |               |                   |                   |
| 1.01             |                    | 0.0              |                  | 0.0             |                  | 209       | 0.20             | 0.14                            | 0.12         | 0.07          | 0.65              | 0.40              |
| 2.74             |                    | 0.0              |                  | 0.0             |                  | 77.4      | 0.54             | 0.37                            | 0.31         | 0.19          | 1.26              | 1.10              |
| 3.19             |                    | 0.0              |                  | 0.0             |                  | 66.5      | 0.63             | 0.43                            | 0.37         | 0.23          | 2.05              | 1.28              |
| 3.74             |                    | 0.0              |                  | 0.0             |                  | 56.7      | 0.73             | 0.51                            | 0.43         | 0.26          | 2.41              | 1.50              |
| 5.19             |                    | 0.0              |                  | 0.0             |                  | 40.9      | 1.02             | 0.71                            | 0.59         | 0.37          | 3.34              | 2.08              |
| 5.98             |                    | 0.0              |                  | 0.0             |                  | 35.4      | 1.2              | 0.81                            | 0.68         | 0.42          | 3.85              | 2.39              |
| 6.98             |                    | 0.0              |                  | 0.0             |                  | 30.4      | 1.4              | 0.95                            | 0.80         | 0.49          | 4.50              | 2.80              |
| 9.98             |                    | 0.0              |                  | 0.0             |                  | 23.6      | 2.0              | 1.13                            | 1.14         | 0.39          | 6.43              | 4.00              |
| 11.5             |                    | 0.0              |                  | 0.0             |                  | 18.5      | 2.3              | 1.6                             | 1.3          | 0.81          | 7.41              | 4.61              |
| 13.5             |                    | 0.0              |                  | 0.0             |                  | 15.7      | 2.6              | 1.8                             | 1.5          | 0.96          | 8.69              | 5.41              |
| 15.5             |                    | 0.0              |                  | 0.0             |                  | 13.7      | 3.0              | 2.1                             | 2.1          | 1.10          | 9.98              | 6.21<br>7.41      |
| 21.6             |                    | 0.0              |                  | 0.0             |                  | 9.83      | 4.2              | 2.9                             | 2.5          | 1.5           | 13.91             | 8.65              |
| 25.3             |                    | 0.0              |                  | 0.0             |                  | 8.39      | 5.0              | 3.4                             | 2.9          | 1.8           | 16.29             | 10.13             |
| 30.0             |                    | 0.0              |                  | 0.0             |                  | 7.08      | 5.9              | 4.1                             | 3.4<br>4.3   | 2.1           | 24.41             | 12.01             |
| 46.6             |                    | 0.0              |                  | 0.0             |                  | 4.55      | 9.1              | 6.3                             | 5.3          | 3.3           | 30.01             | 18.66             |
| 57.6             |                    | 0.0              |                  | 0.0             |                  | 3.68      | 11.3             | 7.8                             | 6.6          | 4.1           | 37.10             | 23.07             |
| 67.2             |                    | 0.0              |                  | 0.0             |                  | 3.15      | 13               | 9.2                             | 7.7          | 4.8           | 43.28             | 26.91             |
| 92.2             |                    | 0.0              |                  | 0.0             |                  | 2.30      | 18               | 13                              | 10.6         | 6.5           | 59.38             | 36.92             |
| 110              |                    | 0.0              |                  | 0.0             |                  | 1.93      | 22               | 15                              | 13           | 7.8           | 70.84             | 44.05             |
| 128              |                    | 0.0              |                  | 0.0             |                  | 1.65      | 25               | 21                              | 15           | 9.1           | 82.44             | 51.26             |
| 178              |                    | 0.0              |                  | 0.0             |                  | 1.19      | 35               | 24                              | 20           | 13            | 114.64            | 71.29             |
| 210              |                    | 0.0              |                  | 0.0             |                  | 1.01      | 41               | 29                              | 24           | 15            | 135.2             | 84.10             |
| 246              |                    | 0.0              |                  | 0.0             |                  | 0.861     | 48               | 33                              | 28           | 17            | 158.4             | 98.52<br>116.14   |
| 343              |                    | 0.0              |                  | 0.0             |                  | 0.617     | 67               | 47                              | 39           | 24            | 220.9             | 137.4             |
| 401              |                    | 0.0              |                  | 0.0             |                  | 0.529     | 79               | 55                              | 46           | 28            | 258.3             | 160.6             |
| 472              |                    | 0.0              |                  | 0.0             |                  | 0.449     | 93<br>109        | 64<br>75                        | 54           | 33            | 304.0<br>356.8    | 189.0             |
| 648              |                    | 0.0              |                  | 0.0             |                  | 0.327     | 127              | 88                              | 74           | 46            | 417.3             | 259.5             |
| 757              |                    | 0.0              |                  | 0.0             |                  | 0.280     | 148              | 103                             | 87           | 54            | 487.5             | 303.2             |
| 887<br>1048      |                    | 0.0              |                  | 0.0             |                  | 0.239     | 205              | 121                             | 102          | 63<br>74      | 571.5             | 355.2<br>419.7    |
| 1227             |                    | 0.0              |                  | 0.0             |                  | 0.173     | 241              | 167                             | 140          | 87            | 790.2             | 491.4             |
| 1438             |                    | 0.0              |                  | 0.0             |                  | 0.147     | 282              | 196                             | 165          | 102           | 926.1             | 575.9             |
| 1828             |                    | 0.0              |                  | 0.0             |                  | 0.126     | 358              | 230                             | 209          | 120           | 1177              | 732.1             |
| 2143             |                    | 1.6              |                  | 1.6             |                  | 0.0989    | 420              | 292                             | 245          | 152           | 1380              | 858.2             |
| 2509             |                    | 2.2              |                  | 3.7             |                  | 0.0845    | 492              | 342                             | 287          | 178           | 1616              | 1004.8            |
| 3448             |                    | 3.6              |                  | 10.4            |                  | 0.0615    | 676              | 469                             | 395          | 209           | 2221              | 1381              |
| 4043             |                    | 6.6              |                  | 16.9            |                  | 0.0524    | 793              | 551                             | 463          | 286           | 2604              | 1619              |
| 4731             |                    | 8.0              |                  | 24.9            |                  | 0.0448    | 928              | 644                             | 541          | 335           | 3047              | 1895              |
| 6004             |                    | 9.7              |                  | 41.8            |                  | 0.0353    | 1177             | 818                             | 687          | 425           | 3867              | 2405              |
| 7032             |                    | 11.0             |                  | 52.9            |                  | 0.0301    | 1379             | 958                             | 805          | 498           | 4529              | 2816              |
| 7897             |                    | 6.0              |                  | 58.9            |                  | 0.0268    | 1548             | 1075                            | 904          | 559           | 5086              | 3163              |
| 9662             |                    | 3.6              |                  | 69.0            |                  | 0.0237    | 1895             | 1316                            | 11022        | 685           | 6223              | 3870              |
| 10464            |                    | 3.6              |                  | 72.6            |                  | 0.0203    | 2052             | 1425                            | 1198         | 741           | 6739              | 4191              |
| 12296            |                    | 5.8              |                  | 78.5            |                  | 0.0172    | 2411             | 1674                            | 1407         | 871           | 7919              | 4924              |
| 16397            |                    | 3.2              |                  | 86.6            |                  | 0.0148    | 3215             | 2233                            | 1876         | 1162          | 10560             | 6567              |
| 18494            |                    | 3.1              |                  | 89.7            |                  | 0.0115    | 3626             | 2518                            | 2116         | 1310          | 11911             | 7407              |
| 20497            |                    | 2.6              |                  | 92.3            |                  | 0.0103    | 4019             | 2791                            | 2346         | 1452          | 13201             | 8209              |
| 23152            |                    | 1.4              |                  | 93.8<br>95.1    |                  | 0.0092    | 4540             | 3153                            | 2650         | 1640          | 14911             | 9272              |
| 27136            |                    | 1.0              |                  | 96.2            |                  | 0.0078    | 5321             | 3695                            | 3105         | 1922          | 17477             | 10868             |
| 29380            |                    | 0.8              |                  | 96.9            |                  | 0.0072    | 5761             | 4001                            | 3362         | 2081          | 18922             | 11766             |
| 31806            |                    | 0.8              |                  | 97.8<br>98.2    |                  | 0.0067    | 6751             | 4331<br>4688                    | 3640<br>3940 | 2253<br>2439  | 20484 22174       | 12/38<br>13788    |
| 37197            |                    | 0.4              |                  | 98.6            |                  | 0.0057    | 7294             | 5065                            | 4257         | 2635          | 23956             | 14897             |
| 40347            |                    | 0.4              |                  | 99.0            |                  | 0.0053    | 7911             | 5494                            | 4617         | 2858          | 25985             | 16158             |
| 43595<br>47293   |                    | 0.3              |                  | 99.5<br>99.6    |                  | 0.0049    | 6548<br>9273     | 5936<br>6440                    | 4989         | 3350          | 26077             | 17459             |
| 51174            |                    | 0.3              |                  | 99.9            |                  | 0.0041    | 10034            | 6968                            | 5856         | 3625          | 32958             | 20495             |
| 55386            |                    | 0.0              |                  | 99.9            |                  | 0.0038    | 10860            | 7542                            | 6338         | 3924          | 35671             | 22181             |



(B) Capillary Pressure Plot



(C) Pore Size Distribution plot



| Well<br>Sample | Depth                  |                         | N<br>7                 | /errlieu-/<br>22.00 m   | 4<br>1               |                                  |                     |                 |                     |                |                        |
|----------------|------------------------|-------------------------|------------------------|-------------------------|----------------------|----------------------------------|---------------------|-----------------|---------------------|----------------|------------------------|
| Client         | Geoscience .           | AVictoria               |                        | Density C               | Gradients (psi/foot) |                                  | Con                 | version Paramet | ers (dynes/cm)      | )              |                        |
| Well           | Meerlieu-4             |                         |                        |                         | Typical              |                                  |                     | air/water       | air/oil             | oil/water      | CO <sub>2</sub> /water |
| Test Method    | Air/Mercury            | Canillary Press         | ire                    | Water:<br>Oil:          | 0.440                | Laboratory The<br>Laboratory IFT | a                   | 0.0<br>72.0     | 0.0<br>24.0         | 30.0<br>48.0   | 0.0                    |
| rest witchiou  | 7 til/ Wiereury        | Capital y 1 10350       | iii c                  | Gas:                    | 0.100                | Reservoir Theta                  |                     | 0.0             | 24.0                | 30.0           | 0.0                    |
| Sample         | M4-1                   |                         |                        | CO Density              | 0.102                | Reservoir IFT                    | T1 (                | 50.0            | 24.0                | 30.0           | 26.0                   |
| Depth          | 722.00 m               |                         |                        | CO <sub>2</sub> Density | 0.183                | Laboratory Tcos                  | s I heta<br>Theta   | 72.0            | 24.0                | 42.0           | 72.0                   |
|                |                        |                         |                        |                         | Estimated Column     | Entry I                          | Pressure (psia)     | Displacement I  | Pressure (psia)     | Threshold P    | ressure (psia)         |
| Pore radius (µ | ım)                    | 0.058                   |                        | System                  | Height (feet)        | Lab                              | Res Con             | Lab             | Resv                | Lab            | Resv                   |
|                |                        |                         |                        | G-W                     | 731                  | 358                              | 249                 | 392             | 272                 | 418            | 290                    |
|                |                        |                         |                        | O-W                     | 1176                 | 119                              | 129                 | 131             | 141                 | 139            | 151                    |
|                |                        |                         |                        | CO <sub>2</sub> -W      | 365                  | 358                              | 129                 | 392             | 141                 | 418            | 151                    |
|                |                        |                         |                        |                         |                      | Equivalent                       | Injection Pressures | Oil/Brine       | Oil/Brine           | Height Above   | Height Above           |
|                | Rav                    | v Data                  | Conforma               | ance Corrected          | Pore                 | Air/Brine                        | Air/Brine           | Lab             | Reservoir           | Free Water     | Free Water             |
| Pressure       | Intrusion<br>(percent) | Saturation<br>(paraant) | Intrusion<br>(norcont) | Saturation              | Diameter             | Lab                              | Res Con             | Conditions      | Conditions<br>(noi) | Oil-Water      | Gas-Water              |
| (psia)         | (percent)              | (percent)               | (percent)              | (percent)               | (µm)                 | (psi)                            | (psi)               | (psi)           | (psi)               | (ieei)         | (leet)                 |
|                |                        |                         |                        |                         |                      |                                  |                     |                 | 0.05                |                |                        |
| 1.00           | 0.0                    | 0.0                     | 0.0                    | 0.0                     | 211                  | 0.20                             | 0.14                | 0.11            | 0.07                | 0.64           | 0.40                   |
| 2.73           | 0.0                    | 0.0                     | 0.0                    | 0.0                     | 77.6                 | 0.54                             | 0.37                | 0.31            | 0.19                | 1.75           | 1.09                   |
| 3.18           | 0.0                    | 0.0                     | 0.0                    | 0.0                     | 66.7                 | 0.62                             | 0.43                | 0.36            | 0.23                | 2.05           | 1.27                   |
| 3.73           | 0.0                    | 0.0                     | 0.0                    | 0.0                     | 56.9                 | 0.73                             | 0.51                | 0.43            | 0.26                | 2.40           | 1.49                   |
| 4.58           | 0.0                    | 0.0                     | 0.0                    | 0.0                     | 40.4                 | 1.02                             | 0.00                | 0.50            | 0.31                | 2.82           | 2.08                   |
| 5.98           | 0.0                    | 0.0                     | 0.0                    | 0.0                     | 35.5                 | 1.17                             | 0.81                | 0.68            | 0.42                | 3.85           | 2.39                   |
| 6.97           | 0.0                    | 0.0                     | 0.0                    | 0.0                     | 30.4                 | 1.37                             | 0.95                | 0.80            | 0.49                | 4.49           | 2.80                   |
| 8.27           | 0.0                    | 0.0                     | 0.0                    | 0.0                     | 25.6                 | 1.62                             | 1.13                | 0.95            | 0.59                | 5.33<br>6.42   | 3.32<br>3.97           |
| 11.5           | 0.0                    | 0.0                     | 0.0                    | 0.0                     | 18.5                 | 2.25                             | 1.56                | 1.32            | 0.82                | 7.43           | 4.59                   |
| 13.5           | 0.0                    | 0.0                     | 0.0                    | 0.0                     | 15.7                 | 2.65                             | 1.84                | 1.54            | 0.95                | 8.66           | 5.41                   |
| 15.5           | 0.0                    | 0.0                     | 0.0                    | 0.0                     | 13.7                 | 3.04                             | 2.11                | 1.77            | 1.10                | 10.0           | 6.21                   |
| 21.6           | 0.0                    | 0.0                     | 0.0                    | 0.0                     | 9.83                 | 4.24                             | 2.94                | 2.47            | 1.53                | 13.9           | 8.65                   |
| 25.3           | 0.0                    | 0.0                     | 0.0                    | 0.0                     | 8.39                 | 4.96                             | 3.44                | 2.90            | 1.80                | 16.4           | 10.1                   |
| 30.0           | 0.0                    | 0.0                     | 0.0                    | 0.0                     | 7.08                 | 5.88                             | 4.08                | 3.43            | 2.12                | 19.3           | 12.0                   |
| 47.2           | 0.2                    | 0.2                     | 0.0                    | 0.0                     | 4.49                 | 9.25                             | 6.42                | 4.20<br>5.40    | 3.34                | 30.4           | 14.9                   |
| 56.6           | 0.3                    | 0.8                     | 0.0                    | 0.0                     | 3.75                 | 11.1                             | 7.71                | 6.48            | 4.01                | 36.5           | 22.7                   |
| 66.3           | 0.4                    | 1.2                     | 0.0                    | 0.0                     | 3.20                 | 13.0                             | 9.03                | 7.59            | 4.70                | 42.7           | 26.6                   |
| 80.4<br>93.0   | 0.5                    | 1.6                     | 0.0                    | 0.0                     | 2.64                 | 15.8                             | 11.0                | 9.20            | 5.70                | 51.8           | 32.4                   |
| 111            | 0.5                    | 2.5                     | 0.0                    | 0.0                     | 1.91                 | 21.8                             | 15.1                | 12.7            | 7.86                | 71.5           | 44.4                   |
| 129            | 0.5                    | 3.0                     | 0.0                    | 0.0                     | 1.65                 | 25.3                             | 17.6                | 14.8            | 9.16                | 83.3           | 51.8                   |
| 152            | 0.5                    | 3.4                     | 0.0                    | 0.0                     | 1.39                 | 29.8<br>35.1                     | 20.7                | 17.4<br>20.5    | 10.8                | 98.2<br>115    | 60.9<br>71.8           |
| 210            | 0.5                    | 4.5                     | 0.0                    | 0.0                     | 1.01                 | 41.2                             | 28.6                | 24.0            | 14.9                | 135            | 84.1                   |
| 247            | 0.6                    | 5.1                     | 0.0                    | 0.0                     | 0.860                | 48.4                             | 33.6                | 28.3            | 17.5                | 159            | 98.8                   |
| 292            | 0.6                    | 5.7                     | 0.0                    | 0.0                     | 0.726                | 57.3                             | 39.8                | 33.4            | 20.7                | 188            | 117                    |
| 401            | 1.0                    | 7.7                     | 0.0                    | 0.0                     | 0.528                | 78.6                             | 54.6                | 45.9            | 24.5                | 258            | 161                    |
| 472            | 1.3                    | 9.0                     | 0.0                    | 0.0                     | 0.449                | 92.5                             | 64.2                | 54.0            | 33.4                | 304            | 189                    |
| 553<br>647     | 1.4                    | 10.4                    | 0.0                    | 0.0                     | 0.383                | 108                              | 75.0                | 63.3<br>74.0    | 39.2<br>45.8        | 356            | 221                    |
| 757            | 1.5                    | 13.7                    | 0.0                    | 0.0                     | 0.280                | 148                              | 103                 | 86.6            | 53.6                | 410            | 303                    |
| 887            | 2.0                    | 15.7                    | 0.0                    | 0.0                     | 0.239                | 174                              | 121                 | 102             | 63.1                | 574            | 356                    |
| 1048           | 2.4                    | 18.1                    | 0.0                    | 0.0                     | 0.202                | 205                              | 142                 | 120             | 74.3                | 675            | 418                    |
| 1439           | 3.1                    | 20.8                    | 0.0                    | 0.0                     | 0.147                | 282                              | 196                 | 140             | 102                 | 927            | 576                    |
| 1688           | 4.2                    | 28.1                    | 5.5                    | 5.5                     | 0.126                | 331                              | 230                 | 193             | 119                 | 1082           | 676                    |
| 1828           | 2.8                    | 30.9                    | 3.7                    | 9.2                     | 0.116                | 358                              | 249                 | 209             | 129                 | 1173           | 732                    |
| 2510           | 10.8                   | 49.4                    | 14.2                   | 33.5                    | 0.0845               | 420                              | 342                 | 245             | 178                 | 1618           | 1006                   |
| 2945           | 10.9                   | 60.3                    | 14.3                   | 47.8                    | 0.0720               | 577                              | 401                 | 337             | 209                 | 1900           | 1179                   |
| 3449           | 31.7                   | 92.0                    | 41.7                   | 89.5                    | 0.0615               | 676                              | 469                 | 395             | 245                 | 2227           | 1379                   |
| 4728           | 0.1                    | 98.8                    | 0.1                    | 98.4                    | 0.0448               | 927                              | 644                 | 541             | 335                 | 3045           | 1894                   |
| 5114           | 0.3                    | 99.1                    | 0.4                    | 98.8                    | 0.0415               | 1003                             | 697                 | 585             | 362                 | 3291           | 2050                   |
| 6002           | 0.4                    | 99.4                    | 0.5                    | 99.3                    | 0.0353               | 1177                             | 817                 | 687             | 425                 | 3864           | 2403                   |
| 7033           | 0.3                    | 99.7<br>99.9            | 0.4                    | 99.0<br>99.9            | 0.0301               | 1548                             | 1075                | 803<br>904      | 498<br>560          | 4327<br>5091   | 3162                   |
| 8920           | 0.1                    | 100.0                   | 0.1                    | 99.9                    | 0.0238               | 1749                             | 1215                | 1021            | 632                 | 5745           | 3574                   |
| 9649           | 0.0                    | 100.0                   | 0.0                    | 100.0                   | 0.0220               | 1892                             | 1314                | 1104            | 683                 | 6209           | 3865                   |
| 10452          | 0.0                    | 100.0                   | 0.0                    | 100.0                   | 0.0203               | 2049                             | 1423                | 1406            | 740<br>870          | 7909           | 4185                   |
| 14333          | 0.0                    | 100.0                   | 0.0                    | 100.0                   | 0.0148               | 2810                             | 1951                | 1640            | 1015                | 9227           | 5738                   |
| 16381          | 0.0                    | 100.0                   | 0.0                    | 100.0                   | 0.0129               | 3212                             | 2231                | 1875            | 1161                | 10555          | 6562                   |
| 18481 20481    | 0.0                    | 100.0                   | 0.0                    | 100.0                   | 0.0115               | 3624                             | 2517                | 2115<br>2344    | 1309                | 11900          | 7403                   |
| 23149          | 0.0                    | 100.0                   | 0.0                    | 100.0                   | 0.0092               | 4539                             | 3152                | 2649            | 1640                | 14909          | 9271                   |
| 25064          | 0.0                    | 100.0                   | 0.0                    | 100.0                   | 0.0085               | 4915                             | 3413                | 2868            | 1775                | 16136          | 10038                  |
| 27135          | 0.0                    | 100.0                   | 0.0                    | 100.0                   | 0.0078               | 5321                             | 3695                | 3105            | 1922                | 17473          | 10868                  |
| 29576          | 0.0                    | 100.0                   | 0.0                    | 100.0                   | 0.0072               | 5760<br>6236                     | 4000                | 3562<br>3640    | 2081                | 20482          | 11765                  |
| 34421          | 0.0                    | 100.0                   | 0.0                    | 100.0                   | 0.0062               | 6749                             | 4687                | 3939            | 2438                | 22164          | 13785                  |
| 37192          | 0.0                    | 100.0                   | 0.0                    | 100.0                   | 0.0057               | 7293                             | 5065                | 4256            | 2635                | 23955          | 14897                  |
| 40343          | 0.0                    | 100.0                   | 0.0                    | 100.0                   | 0.0053               | 7910                             | 5493<br>5935        | 4617<br>4989    | 2858                | 25982 28073    | 16156<br>17456         |
| 47291          | 0.0                    | 100.0                   | 0.0                    | 100.0                   | 0.0045               | 9273                             | 6440                | 5412            | 3350                | 30455          | 18941                  |
| 51172          | 0.0                    | 100.0                   | 0.0                    | 100.0                   | 0.0041               | 10034                            | 6968                | 5856            | 3625                | 32955          | 20494                  |
| 55387<br>59880 | 0.0                    | 100.0                   | 0.0                    | 100.0                   | 0.0038               | 10860                            | /542<br>8153        | 6339<br>6853    | 3924<br>4242        | 356/3<br>38564 | 22182                  |









(C) Pore Size Distribution plot

### ACS LABORATORES PTY. LTD.

| Well<br>Sample | Depth         |                 | 1         | Merrlieu-<br>769.00 n | 4<br>n              |                                  |                |                 |                |              |                        |
|----------------|---------------|-----------------|-----------|-----------------------|---------------------|----------------------------------|----------------|-----------------|----------------|--------------|------------------------|
| Client         | Geoscience    | Victoria        |           | Density (             | radients (nsi/foot) |                                  | Com            | version Paramet | ers (dynes/cm  | )            |                        |
| Well           | Meerlieu-4    | victoria        |           | Density C             | Typical             |                                  | Conv           | air/water       | air/oil        | oil/water    | CO <sub>2</sub> /water |
|                |               |                 |           | Water:                | 0.440               | Laboratory The                   | ta             | 0.0             | 0.0            | 30.0         | 0.0                    |
| Test Method    | Air/Mercury   | Capillary Press | sure      | Oil:                  | 0.330               | Laboratory IFT                   |                | 72.0            | 24.0           | 48.0         | 72.0                   |
| Sample         | 2             |                 |           | Gas:                  | 0.100               | Reservoir Theta<br>Reservoir IET |                | 0.0<br>50.0     |                | 30.0<br>30.0 | 0.0<br>26.0            |
| Depth          | 2<br>769.00 m |                 |           | CO2 Density           | 0.215               | Laboratory Tco:                  | sTheta         | 72.0            | 24.0           | 42.0         | 72.0                   |
|                |               |                 |           |                       |                     | Reservoir Tcos                   | Theta          | 50.0            |                | 26.0         | 26.0                   |
| Ambient Pern   | neability     |                 |           |                       | Estimated Column    | Entry P                          | ressure (psia) | Displacement F  | ressure (psia) | Threshold P  | ressure (psia)         |
| Ambient Poro   | sity<br>m)    | 0.039           |           | System<br>A-Hg        | Height (feet)       | Lab<br>2709                      | Res Con        | Lab<br>3340     | Resv           | Lab<br>3602  | Resv                   |
| pore rautus (µ | )             | 0.057           |           | G-W                   | 1086                | 532                              | 369            | 655             | 455            | 707          | 491                    |
|                |               |                 |           | O-W                   | 1745                | 177                              | 192            | 218             | 237            | 236          | 255                    |
|                |               |                 |           | CO <sub>2</sub> -W    | 565                 | 532                              | 192            | 655             | 237            | 707          | 255                    |
|                |               |                 |           |                       |                     | E 1 1 4                          | L' C D         | 0.1/D .         | 0'1/D :        | 11 - 1 - 41  | TT : 1 / 41            |
|                | Raw           | / Data          | Conform   | ance Corrected        | Pore                | Air/Brine                        | Air/Brine      | Lab             | Reservoir      | Free Water   | Free Water             |
| Pressure       | Intrusion     | Saturation      | Intrusion | Saturation            | Diameter            | Lab                              | Res Con        | Conditions      | Conditions     | Oil-Water    | Gas-Water              |
| (psia)         | (percent)     | (percent)       | (percent) | (percent)             | (µm)                | (psi)                            | (psi)          | (psi)           | (psi)          | (feet)       | (feet)                 |
| 1.01           | 0.0           | 0.0             | 0.0       | 0.0                   | 211                 | 0.20                             | 0.14           | 0.12            | 0.07           | 0.65         | 0.41                   |
| 1.98           | 0.7           | 0.7             | 0.0       | 0.0                   | 107                 | 0.39                             | 0.27           | 0.23            | 0.14           | 1.28         | 0.79                   |
| 2.73           | 0.3           | 1.1             | 0.0       | 0.0                   | 77.7                | 0.54                             | 0.37           | 0.31            | 0.19           | 1.75         | 1.09                   |
| 3.18           | 0.1           | 1.2             | 0.0       | 0.0                   | 66.7                | 0.62                             | 0.43           | 0.36            | 0.23           | 2.05         | 1.27                   |
| 3.73           | 0.2           | 1.4             | 0.0       | 0.0                   | 56.9<br>48.4        | 0.73                             | 0.51           | 0.43            | 0.26           | 2.40         | 1.49                   |
| 5.18           | 0.2           | 1.5             | 0.0       | 0.0                   | 41.0                | 1.02                             | 0.71           | 0.50            | 0.37           | 3.34         | 2.08                   |
| 5.97           | 0.1           | 1.8             | 0.0       | 0.0                   | 35.5                | 1.17                             | 0.81           | 0.68            | 0.42           | 3.85         | 2.39                   |
| 6.97           | 0.2           | 2.0             | 0.0       | 0.0                   | 30.4                | 1.37                             | 0.95           | 0.80            | 0.49           | 4.49         | 2.80                   |
| 8.27           | 0.2           | 2.2             | 0.0       | 0.0                   | 25.6                | 1.62                             | 1.13           | 0.95            | 0.59           | 5.33         | 3.32                   |
| 9.97           | 0.2           | 2.4             | 0.0       | 0.0                   | 21.3                | 1.95                             | 1.35           | 1.14            | 0.71           | 6.42<br>7.42 | 3.97                   |
| 13.5           | 0.2           | 3.5             | 0.0       | 0.0                   | 15.7                | 2.65                             | 1.84           | 1.52            | 0.82           | 8.66         | 5.41                   |
| 15.5           | 0.3           | 3.7             | 0.0       | 0.0                   | 13.7                | 3.04                             | 2.11           | 1.77            | 1.10           | 10.0         | 6.21                   |
| 18.5           | 0.3           | 4.0             | 0.0       | 0.0                   | 11.5                | 3.63                             | 2.52           | 2.12            | 1.31           | 11.9         | 7.41                   |
| 21.6           | 0.3           | 4.3             | 0.0       | 0.0                   | 9.83                | 4.24                             | 2.94           | 2.47            | 1.53           | 13.9         | 8.65                   |
| 25.3           | 0.3           | 4.6             | 0.0       | 0.0                   | 8.39                | 4.96                             | 3.44           | 2.90            | 1.80           | 16.4         | 10.1                   |
| 39.7           | 0.4           | 5.0             | 0.0       | 0.0                   | 5.34                | 7.78                             | 5.40           | 4.54            | 2.12           | 25.5         | 15.9                   |
| 49.5           | 0.1           | 5.1             | 0.0       | 0.0                   | 4.28                | 9.71                             | 6.74           | 5.66            | 3.50           | 31.8         | 19.8                   |
| 57.3           | 0.0           | 5.1             | 0.0       | 0.0                   | 3.70                | 11.2                             | 7.78           | 6.56            | 4.06           | 36.9         | 22.9                   |
| 67.8           | 0.1           | 5.3             | 0.0       | 0.0                   | 3.13                | 13.3                             | 9.24           | 7.76            | 4.80           | 43.6         | 27.2                   |
| 80.3           | 0.1           | 5.4             | 0.0       | 0.0                   | 2.64                | 15.7                             | 10.9           | 9.19            | 5.69           | 51.7         | 32.1                   |
| 111            | 0.1           | 5.6             | 0.0       | 0.0                   | 1.92                | 21.8                             | 12.8           | 12.7            | 7.86           | 71.5         | 44.4                   |
| 130            | 0.1           | 5.7             | 0.0       | 0.0                   | 1.63                | 25.5                             | 17.7           | 14.9            | 9.22           | 83.8         | 52.1                   |
| 155            | 0.1           | 5.8             | 0.0       | 0.0                   | 1.37                | 30.4                             | 21.1           | 17.7            | 11.0           | 100          | 62.1                   |
| 181            | 0.1           | 5.9             | 0.0       | 0.0                   | 1.17                | 35.5                             | 24.7           | 20.7            | 12.8           | 116          | 72.6                   |
| 211 248        | 0.1           | 6.0             | 0.0       | 0.0                   | 0.853               | 41.4                             | 28.8           | 24.1            | 14.9           | 135          | 84.7<br>99.4           |
| 294            | 0.1           | 6.3             | 0.1       | 0.1                   | 0.722               | 57.6                             | 40.0           | 33.6            | 20.8           | 189          | 118                    |
| 345            | 0.2           | 6.4             | 0.2       | 0.3                   | 0.615               | 67.6                             | 46.9           | 39.5            | 24.5           | 223          | 138                    |
| 405            | 0.2           | 6.6             | 0.2       | 0.5                   | 0.523               | 79.4                             | 55.1           | 46.3            | 28.7           | 261          | 162                    |
| 475            | 0.2           | 6.8<br>7.1      | 0.2       | 0.7                   | 0.447               | 93.1                             | 64.7<br>75.7   | 54.4            | 33.7           | 306          | 190                    |
| 650            | 0.3           | 7.4             | 0.3       | 1.3                   | 0.326               | 109                              | 88.2           | 74.4            | 46.1           | 419          | 259                    |
| 760            | 0.4           | 7.8             | 0.4       | 1.7                   | 0.279               | 149                              | 103            | 87.0            | 53.9           | 490          | 303                    |
| 890            | 0.5           | 8.2             | 0.5       | 2.3                   | 0.238               | 175                              | 122            | 102             | 63.1           | 574          | 359                    |
| 1049           | 0.6           | 8.9             | 0.7       | 2.9                   | 0.202               | 206                              | 143            | 120             | 74.3           | 675          | 421                    |
| 1230           | 0.8           | 9.6             | 0.8       | 3.7<br>4.7            | 0.172               | 241                              | 107            | 141             | 87.5<br>102    | 927          | 491<br>576             |
| 1692           | 1.2           | 11.7            | 1.3       | 6.0                   | 0.125               | 332                              | 231            | 194             | 120            | 1091         | 679                    |
| 1831           | 0.7           | 12.4            | 0.8       | 6.7                   | 0.116               | 359                              | 249            | 210             | 130            | 1182         | 732                    |
| 2146           | 1.7           | 14.1            | 1.8       | 8.5                   | 0.0988              | 421                              | 292            | 246             | 152            | 1382         | 859                    |
| 2511           | 1.7           | 15.8            | 1.8       | 10.4                  | 0.0844              | 492<br>577                       | 342<br>401     | 287             | 1/8            | 1018         | 1006                   |
| 3449           | 4.8           | 23.7            | 5.1       | 18.7                  | 0.0615              | 676                              | 469            | 395             | 245            | 2227         | 1379                   |
| 4042           | 7.4           | 31.1            | 7.9       | 26.6                  | 0.0524              | 793                              | 551            | 463             | 287            | 2609         | 1621                   |
| 4728           | 17.6          | 48.7            | 18.8      | 45.4                  | 0.0448              | 927                              | 644            | 541             | 335            | 3045         | 1894                   |
| 5106           | 9.6<br>10 4   | 58.3<br>77 7    | 10.2      | 55.6                  | 0.0415              | 1001                             | 695            | 584             | 362            | 3291         | 2044                   |
| 7022           | 22.1          | 99.8            | 20.7      | 70.5<br>99.8          | 0.0354              | 1377                             | 956            | 804             | 423            | 4527         | 2400                   |
| 7886           | 0.0           | 99.8            | 0.0       | 99.8                  | 0.0269              | 1546                             | 1074           | 902             | 558            | 5073         | 3159                   |
| 8916           | 0.1           | 99.9            | 0.1       | 99.9                  | 0.0238              | 1748                             | 1214           | 1020            | 631            | 5736         | 3571                   |
| 9648           | 0.1           | 99.9            | 0.1       | 99.9                  | 0.0220              | 1892                             | 1314           | 1104            | 683            | 6209         | 3865                   |
| 10432          | 0.0           | 100.0           | 0.0       | 100.0                 | 0.0203              | 2049                             | 1423           | 1406            | 740<br>870     | 7909         | 4185<br>4921           |
| 14331          | 0.0           | 100.0           | 0.0       | 100.0                 | 0.0148              | 2810                             | 1951           | 1640            | 1015           | 9227         | 5738                   |
| 16381          | 0.0           | 100.0           | 0.0       | 100.0                 | 0.0129              | 3212                             | 2231           | 1875            | 1161           | 10555        | 6562                   |
| 18479          | 0.0           | 100.0           | 0.0       | 100.0                 | 0.0115              | 3623                             | 2516           | 2115            | 1309           | 11900        | 7400                   |
| 20480          | 0.0           | 100.0           | 0.0       | 100.0                 | 0.0104              | 4016                             | 2789           | 2344            | 1451           | 13191        | 8203                   |
| 25148          | 0.0           | 100.0           | 0.0       | 100.0                 | 0.0092              | 4539                             | 3413           | 2049<br>2868    | 1040           | 14909        | 9271<br>10038          |
| 27137          | 0.0           | 100.0           | 0.0       | 100.0                 | 0.0078              | 5321                             | 3695           | 3106            | 1923           | 17482        | 10868                  |
| 29376          | 0.0           | 100.0           | 0.0       | 100.0                 | 0.0072              | 5760                             | 4000           | 3362            | 2081           | 18918        | 11765                  |
| 31803          | 0.0           | 100.0           | 0.0       | 100.0                 | 0.0067              | 6236                             | 4331           | 3640            | 2253           | 20482        | 12738                  |
| 34423          | 0.0           | 100.0           | 0.0       | 100.0                 | 0.0062              | 6750                             | 4688           | 3939            | 2438           | 22164        | 13788                  |
| 37192          | 0.0           | 100.0           | 0.0       | 100.0                 | 0.0057              | 7293                             | 5065<br>5493   | 4256            | 2635           | 23955        | 14897<br>16156         |
| 43591          | 0.0           | 100.0           | 0.0       | 100.0                 | 0.0049              | 8547                             | 5935           | 4989            | 3088           | 28073        | 17456                  |
| 47294          | 0.0           | 100.0           | 0.0       | 100.0                 | 0.0045              | 9273                             | 6440           | 5412            | 3350           | 30455        | 18941                  |
| 51172          | 0.0           | 100.0           | 0.0       | 100.0                 | 0.0041              | 10034                            | 6968           | 5856            | 3625           | 32955        | 20494                  |
| 55385          | 0.0           | 100.0           | 0.0       | 100.0                 | 0.0038              | 10860                            | 7542           | 6338            | 3924           | 35673        | 22182                  |
| 37860          | 0.0           | 100.0           | 0.0       | 100.0                 | 0.0035              | 11/41                            | 8133           | 0805            | 4242           | 38304        | 23719                  |



(B) Capillary Pressure Plot



(C) Pore Size Distribution plot

| Well<br>Sample                                                                                                                                                                                                                                                                                                                                                                           | Depth                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Aeerlieu<br>599.9 m                                                                                                                 | 15001                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Client<br>Well                                                                                                                                                                                                                                                                                                                                                                           | Geoscience A<br>Meerlieu-150                                                           | AVIctoria<br>001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Density<br>Water:                                                                                                                   | Gradients (psi/foot) Typical 0.440                                                                                                                                                                                                                                                                                                                                                  | Laboratory Thet                                                                                                                                                                                                                                                                                                                                                                       | Cor                                                                                                                                                                                                                                                                                                                                                                                                                   | air/water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ters (dynes/cm<br>air/oil<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | oil/water<br>30.0                                                                                                                                                                                                                                                                                                                                         | CO <sub>2</sub> /water<br>0.0                                                                                                                                                                                                                                                                                                                                    |
| Test Method<br>Sample<br>Depth                                                                                                                                                                                                                                                                                                                                                           | Air/Mercury<br>M15001<br>699.90 m                                                      | Capillary Pressu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Oil:<br>Gas:<br>CO <sub>2</sub> Density                                                                                             | 0.330<br>0.100                                                                                                                                                                                                                                                                                                                                                                      | Laboratory IFT<br>Reservoir Theta<br>Reservoir IFT<br>Laboratory Tcos                                                                                                                                                                                                                                                                                                                 | Theta                                                                                                                                                                                                                                                                                                                                                                                                                 | 72.0<br>0.0<br>50.0<br>72.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24.0<br>24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 48.0<br>30.0<br>30.0<br>42.0                                                                                                                                                                                                                                                                                                                              | 72.0<br>0.0<br>26.0<br>72.0                                                                                                                                                                                                                                                                                                                                      |
| Pore radius (µ                                                                                                                                                                                                                                                                                                                                                                           | m)                                                                                     | 0.176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | System<br>A-Hg<br>G-W<br>O-W                                                                                                        | Estimated Column<br>Height (feet)<br>na<br>242<br>390                                                                                                                                                                                                                                                                                                                               | Keservoir 1 cos1           Entry P           Lab           605           119           39.6                                                                                                                                                                                                                                                                                           | ressure (psia)<br>Res Con<br>-<br>82.4<br>42.9                                                                                                                                                                                                                                                                                                                                                                        | 50.0<br>Displacement F<br>Lab<br>932<br>183<br>60.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pressure (psia)<br>Resv<br>-<br>127<br>66.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26.0<br>Threshold I<br>Lab<br>1033<br>203<br>67.6                                                                                                                                                                                                                                                                                                         | 26.0<br>Pressure (psia)<br>Resv<br>-<br>141<br>73.2                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CO <sub>2</sub> -W                                                                                                                  | 118                                                                                                                                                                                                                                                                                                                                                                                 | 119<br>Equivalent                                                                                                                                                                                                                                                                                                                                                                     | 42.9<br>Injection Pressures                                                                                                                                                                                                                                                                                                                                                                                           | 183<br>Oil/Brine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 66.0<br>Oil/Brine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 203<br>Height Above                                                                                                                                                                                                                                                                                                                                       | 73.2<br>Height Above                                                                                                                                                                                                                                                                                                                                             |
| Pressure<br>(psia)                                                                                                                                                                                                                                                                                                                                                                       | Raw<br>Intrusion<br>(percent)                                                          | Data<br>Saturation<br>(percent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Conforma<br>Intrusion<br>(percent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Saturation<br>(percent)                                                                                                             | Pore<br>Diameter<br>(μm)                                                                                                                                                                                                                                                                                                                                                            | Air/Brine<br>Lab<br>(psi)                                                                                                                                                                                                                                                                                                                                                             | Air/Brine<br>Res Con<br>(psi)                                                                                                                                                                                                                                                                                                                                                                                         | Lab<br>Conditions<br>(psi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Reservoir<br>Conditions<br>(psi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Free Water<br>Oil-Water<br>(feet)                                                                                                                                                                                                                                                                                                                         | Free Water<br>Gas-Water<br>(feet)                                                                                                                                                                                                                                                                                                                                |
| (psia)<br>1.00<br>1.98<br>2.73<br>3.18<br>3.73<br>4.38<br>5.98<br>6.97<br>8.27<br>9.97<br>9.97<br>9.97<br>9.97<br>9.97<br>11.5<br>13.5<br>15.5<br>18.5<br>21.6<br>25.3<br>30.0<br>37.2<br>47.2<br>56.6<br>66.3<br>80.4<br>93.0<br>111<br>129<br>152<br>179<br>210<br>247<br>292<br>343<br>401<br>472<br>553<br>647<br>757<br>887<br>1048<br>1227<br>1439<br>1688<br>1828<br>2142<br>2510 | (percent)<br>0.0<br>0.8<br>0.3<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2 | (percent)<br>0.0<br>0.8<br>1.1<br>1.3<br>1.5<br>1.7<br>1.9<br>2.0<br>2.2<br>2.4<br>2.5<br>2.6<br>2.9<br>3.0<br>3.3<br>3.6<br>3.9<br>4.2<br>4.2<br>4.3<br>4.4<br>4.5<br>5.5<br>5.8<br>6.3<br>6.8<br>7.4<br>7.9<br>8.6<br>9.4<br>10.3<br>11.5<br>1.7<br>1.9<br>8.6<br>9.4<br>10.3<br>11.5<br>1.7<br>1.9<br>1.7<br>1.9<br>1.7<br>1.9<br>1.7<br>1.9<br>1.7<br>1.9<br>1.7<br>1.9<br>1.7<br>1.9<br>1.7<br>1.9<br>1.7<br>1.9<br>1.7<br>1.9<br>1.7<br>1.9<br>1.7<br>1.9<br>1.7<br>1.9<br>1.7<br>1.9<br>1.7<br>1.9<br>1.7<br>1.9<br>1.7<br>1.9<br>1.7<br>1.9<br>1.7<br>1.9<br>1.7<br>1.9<br>1.7<br>1.7<br>1.9<br>1.7<br>1.9<br>1.7<br>1.9<br>1.7<br>1.9<br>1.7<br>1.9<br>1.7<br>1.9<br>1.7<br>1.9<br>1.7<br>1.9<br>1.7<br>1.9<br>1.7<br>1.9<br>1.5<br>1.7<br>1.7<br>1.9<br>1.7<br>1.9<br>1.7<br>1.9<br>1.7<br>1.9<br>1.7<br>1.9<br>1.7<br>1.9<br>1.7<br>1.7<br>1.9<br>1.7<br>1.7<br>1.9<br>1.7<br>1.7<br>1.9<br>1.7<br>1.7<br>1.7<br>1.7<br>1.9<br>1.5<br>1.3<br>1.5<br>1.5<br>1.3<br>1.5<br>1.5<br>1.3<br>1.5<br>1.5<br>1.3<br>1.5<br>1.5<br>1.3<br>1.5<br>1.5<br>1.5<br>1.5<br>1.3<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5 | (percent)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (percent)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.                                                                    | (µm)<br>211<br>107<br>77.6<br>66.7<br>56.9<br>48.4<br>41.0<br>35.5<br>30.4<br>25.6<br>21.3<br>18.5<br>15.7<br>13.7<br>11.5<br>9.83<br>8.39<br>7.08<br>5.70<br>4.49<br>3.75<br>3.20<br>2.64<br>2.28<br>1.91<br>1.65<br>1.39<br>1.18<br>1.01<br>0.860<br>0.726<br>0.619<br>0.528<br>0.483<br>0.383<br>0.328<br>0.239<br>0.202<br>0.173<br>0.147<br>0.126<br>0.116<br>0.0990<br>0.0845 | (psi)<br>0.20<br>0.39<br>0.54<br>0.62<br>0.73<br>0.86<br>1.02<br>1.17<br>1.37<br>1.62<br>2.55<br>2.65<br>3.04<br>3.63<br>4.24<br>4.96<br>5.88<br>7.29<br>9.25<br>11.1<br>13.0<br>15.8<br>18.2<br>21.8<br>25.3<br>29.8<br>35.1<br>41.2<br>48.4<br>57.3<br>78.6<br>92.5<br>108<br>127<br>148<br>174<br>205<br>241<br>255<br>241<br>255<br>265<br>265<br>265<br>265<br>265<br>265<br>265 | (psi)<br>0.14<br>0.27<br>0.37<br>0.43<br>0.51<br>0.60<br>0.71<br>0.81<br>0.95<br>1.13<br>1.35<br>1.56<br>1.84<br>2.11<br>2.52<br>2.94<br>3.44<br>4.08<br>5.06<br>6.42<br>7.71<br>9.03<br>11.0<br>12.6<br>15.1<br>17.6<br>20.7<br>24.4<br>28.6<br>33.6<br>39.8<br>46.7<br>54.6<br>64.2<br>75.0<br>88.2<br>103<br>121<br>142<br>167<br>196<br>230<br>249<br>249<br>242<br>242<br>244<br>211<br>211<br>211<br>211<br>211 | (psi)<br>0.11<br>0.23<br>0.31<br>0.36<br>0.43<br>0.50<br>0.59<br>0.68<br>0.80<br>0.95<br>1.14<br>1.32<br>1.54<br>1.54<br>1.54<br>1.54<br>1.77<br>2.12<br>2.47<br>2.90<br>3.43<br>4.26<br>5.40<br>6.48<br>7.59<br>9.20<br>10.6<br>12.7<br>14.8<br>17.4<br>20.5<br>24.0<br>28.3<br>33.4<br>39.3<br>35.4<br>0.68<br>17.4<br>28.3<br>33.4<br>39.3<br>35.4<br>0.68<br>17.4<br>28.3<br>33.4<br>39.3<br>35.4<br>0.68<br>17.4<br>28.5<br>24.0<br>28.3<br>33.4<br>39.3<br>35.4<br>0.68<br>17.4<br>28.3<br>33.4<br>39.3<br>35.4<br>0.68<br>17.4<br>28.3<br>33.4<br>39.3<br>35.4<br>0.68<br>17.5<br>24.0<br>28.3<br>33.4<br>39.3<br>35.4<br>0.68<br>17.5<br>24.0<br>28.3<br>33.4<br>39.3<br>35.4<br>0.68<br>17.5<br>24.0<br>28.3<br>33.4<br>39.3<br>35.4<br>0.68<br>17.5<br>24.0<br>28.3<br>33.4<br>39.3<br>35.4<br>0.65<br>10.2<br>10.6<br>10.2<br>10.6<br>10.2<br>10.6<br>10.5<br>24.0<br>28.3<br>33.4<br>39.3<br>35.4<br>10.6<br>10.2<br>10.6<br>10.2<br>10.6<br>10.6<br>10.2<br>10.6<br>10.6<br>10.2<br>10.6<br>10.6<br>10.2<br>10.6<br>10.7<br>10.6<br>10.7<br>10.6<br>10.7<br>10.6<br>10.7<br>10.6<br>10.7<br>10.6<br>10.7<br>10.6<br>10.7<br>10.6<br>10.7<br>10.6<br>10.7<br>10.6<br>10.7<br>10.6<br>10.2<br>10.6<br>10.6<br>10.2<br>10.6<br>10.2<br>10.6<br>10.2<br>10.6<br>10.2<br>10.6<br>10.2<br>10.6<br>10.2<br>10.6<br>10.2<br>10.6<br>10.2<br>10.6<br>10.2<br>10.6<br>10.2<br>10.6<br>10.2<br>10.6<br>10.2<br>10.6<br>10.2<br>10.6<br>10.2<br>10.6<br>10.2<br>10.6<br>10.2<br>10.6<br>10.2<br>10.6<br>10.2<br>10.6<br>10.2<br>10.6<br>10.2<br>10.6<br>10.2<br>10.6<br>10.2<br>10.6<br>10.2<br>10.6<br>10.2<br>10.6<br>10.2<br>10.0<br>10.6<br>10.2<br>10.0<br>10.6<br>10.2<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0 | (psi)<br>0.07<br>0.14<br>0.19<br>0.23<br>0.26<br>0.31<br>0.37<br>0.42<br>0.49<br>0.59<br>0.71<br>0.82<br>0.95<br>1.10<br>1.31<br>1.53<br>1.80<br>2.12<br>2.64<br>3.34<br>4.01<br>4.70<br>6.56<br>7.86<br>9.16<br>10.8<br>12.7<br>2.64<br>3.34<br>4.01<br>4.70<br>6.57<br>7.86<br>9.16<br>10.8<br>12.7<br>2.64<br>3.34<br>4.01<br>4.70<br>6.56<br>7.86<br>6.56<br>7.86<br>9.16<br>10.8<br>12.7<br>2.64<br>3.34<br>4.01<br>4.70<br>6.56<br>7.86<br>6.56<br>7.86<br>6.56<br>7.86<br>6.56<br>7.86<br>6.56<br>7.86<br>6.56<br>7.86<br>6.56<br>7.86<br>6.56<br>7.86<br>6.56<br>7.86<br>6.56<br>7.86<br>6.56<br>7.86<br>6.56<br>7.86<br>6.56<br>7.86<br>6.56<br>7.86<br>6.56<br>7.86<br>6.56<br>7.86<br>6.50<br>7.86<br>6.56<br>7.86<br>6.50<br>7.86<br>6.56<br>7.86<br>6.56<br>7.86<br>6.56<br>7.86<br>6.56<br>7.86<br>6.50<br>7.85<br>0.71<br>1.9<br>1.9<br>1.9<br>1.9<br>1.9<br>1.9<br>1.9<br>1. | (feet)<br>0.64<br>1.28<br>1.75<br>2.05<br>2.40<br>2.82<br>3.34<br>3.85<br>4.49<br>5.33<br>6.42<br>7.43<br>8.66<br>10.0<br>11.9<br>13.9<br>16.4<br>19.3<br>24.0<br>30.4<br>36.5<br>42.7<br>51.8<br>59.6<br>71.5<br>8.33<br>98.2<br>115<br>135<br>159<br>188<br>221<br>258<br>304<br>416<br>487<br>574<br>675<br>788<br>927<br>1082<br>1173<br>1382<br>1618 | (feet)<br>0.40<br>0.79<br>1.09<br>1.27<br>1.49<br>1.76<br>2.08<br>2.39<br>2.80<br>3.32<br>3.97<br>4.59<br>5.41<br>6.21<br>7.41<br>8.65<br>10.1<br>12.0<br>14.9<br>18.9<br>22.7<br>26.6<br>32.4<br>37.1<br>44.4<br>51.8<br>60.9<br>71.8<br>84.1<br>98.8<br>117<br>137<br>161<br>189<br>221<br>259<br>303<br>356<br>418<br>491<br>576<br>676<br>732<br>859<br>1006 |
| 2945<br>3449<br>4040<br>4728<br>5114<br>6002<br>7033<br>7895<br>8920<br>9649<br>10452<br>12283<br>14333<br>16381                                                                                                                                                                                                                                                                         | $\begin{array}{c} 0.6\\ 0.1\\ 0.1\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$                 | 99.7<br>99.8<br>99.9<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.7<br>0.1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 99.7<br>99.8<br>99.9<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0             | 0.0720<br>0.0615<br>0.0525<br>0.0448<br>0.0415<br>0.0353<br>0.0301<br>0.0269<br>0.0238<br>0.0220<br>0.0203<br>0.0173<br>0.0148<br>0.0129                                                                                                                                                                                                                                            | 577<br>676<br>792<br>927<br>1003<br>1177<br>1379<br>1548<br>1749<br>1892<br>2049<br>2408<br>2810<br>3212                                                                                                                                                                                                                                                                              | 401<br>469<br>550<br>644<br>697<br>817<br>958<br>1075<br>1215<br>1314<br>1423<br>1672<br>1951<br>2231                                                                                                                                                                                                                                                                                                                 | 337<br>395<br>462<br>541<br>585<br>687<br>805<br>904<br>1021<br>1104<br>1196<br>1406<br>1640<br>1875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 209<br>245<br>286<br>335<br>362<br>425<br>498<br>560<br>632<br>683<br>740<br>870<br>1015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1900<br>2227<br>2600<br>3045<br>3291<br>3864<br>4527<br>5091<br>5745<br>6209<br>6727<br>7909<br>9227<br>10555                                                                                                                                                                                                                                             | 1179<br>1379<br>1618<br>1894<br>2050<br>2403<br>2818<br>3162<br>3574<br>3865<br>4185<br>4918<br>5738<br>6562                                                                                                                                                                                                                                                     |
| 18481<br>20481<br>23149<br>25064<br>27135<br>29376<br>31804<br>34421<br>37192<br>40343<br>40343<br>40343<br>40343<br>43591<br>47291<br>51172<br>55387<br>59880                                                                                                                                                                                                                           | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                     | 100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0 | 0.0115<br>0.0104<br>0.0092<br>0.0085<br>0.0078<br>0.0072<br>0.0067<br>0.0062<br>0.0053<br>0.0049<br>0.0045<br>0.0041<br>0.0038<br>0.0038                                                                                                                                                                                                                                            | 3624<br>4016<br>4539<br>4915<br>5321<br>5760<br>6236<br>6749<br>7293<br>7910<br>8547<br>9273<br>10034<br>10860<br>11741                                                                                                                                                                                                                                                               | 2517<br>2789<br>3152<br>3413<br>3695<br>4000<br>4331<br>4687<br>5065<br>5493<br>5935<br>6440<br>6968<br>7542<br>8153                                                                                                                                                                                                                                                                                                  | 2115<br>2344<br>2649<br>2868<br>3105<br>3362<br>3640<br>3939<br>4256<br>4617<br>4989<br>5412<br>5856<br>6339<br>6853                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1309<br>1451<br>1640<br>1775<br>1922<br>2081<br>2253<br>2438<br>2635<br>2858<br>3088<br>3350<br>3625<br>3924<br>4242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11900<br>13191<br>14909<br>16136<br>17473<br>18918<br>20482<br>22164<br>23955<br>25982<br>28073<br>30455<br>32955<br>35673<br>38564                                                                                                                                                                                                                       | 7403<br>8203<br>9271<br>10038<br>10868<br>11765<br>12738<br>13785<br>14897<br>16156<br>17456<br>18941<br>20494<br>22182<br>23979                                                                                                                                                                                                                                 |

598800.0100.00.0100.0(A) Interpreted Capillary Pressure Chart



<sup>(</sup>B) Capillary Pressure Plot



(C) Pore Size Distribution plot

| Vell<br>ample       | Depth                  |                           | N<br>B                 | /ullungd<br>863.00 m            | ung-7<br>เ                |                                                     |                          |                          |                        |                           |                                       |
|---------------------|------------------------|---------------------------|------------------------|---------------------------------|---------------------------|-----------------------------------------------------|--------------------------|--------------------------|------------------------|---------------------------|---------------------------------------|
| lient               | Geoscience             | AVictoria                 |                        | Density (                       | Gradients (psi/foot)      |                                                     | Co                       | nversion Parame          | ters (dynes/cn         | )                         |                                       |
| √ell<br>`est Method | Mullungdun             | g-7<br>Capillary Pressure | e                      | Water:<br>Oil:                  | Typical<br>0.440<br>0.330 | Laboratory Thet<br>Laboratory IFT                   | a                        | air/water<br>0.0<br>72.0 | air/oil<br>0.0<br>24.0 | oil/water<br>30.0<br>48.0 | CO <sub>2</sub> /water<br>0.0<br>72.0 |
| ample<br>epth       | M7<br>363.00 m         |                           |                        | Gas:<br>CO <sub>2</sub> Density | 0.100                     | Reservoir Theta<br>Reservoir IFT<br>Laboratory Tcos | Theta                    | 0.0<br>50.0<br>72.0      | 24.0                   | 30.0<br>30.0<br>42.0      | 0.0<br>26.0<br>72.0                   |
|                     |                        |                           |                        |                                 | Estimated Column          | Reservoir Tcos<br>Entry F                           | Theta<br>Pressure (psia) | 50.0<br>Displacement F   | Pressure (psia)        | 26.0<br>Threshold F       | 26.0<br>Pressure (psia)               |
| əre radius (µ       | ım)                    | 2.34                      |                        | System<br>A-Hg                  | Height (feet)<br>na       | Lab<br>45.5                                         | Res Con                  | Lab<br>98.3              | Resv -                 | Lab<br>126                | Resv<br>-                             |
|                     |                        |                           |                        | O-W<br>CO <sub>2</sub> -W       | 29<br>8                   | 8.92<br>2.97<br>8.92                                | 3.22<br>3.22             | 6.43<br>19.3             | 6.96<br>6.96           | 8.27<br>24.8              | 8.96<br>8.96                          |
|                     | Pau                    | 7 Data                    | Conform                | unce Corrected                  | Dore                      | Equivalent                                          | Injection Pressures      | Oil/Brine                | Oil/Brine<br>Reservoir | Height Above              | Height Above                          |
| Pressure<br>(psia)  | Intrusion<br>(percent) | Saturation<br>(percent)   | Intrusion<br>(percent) | Saturation<br>(percent)         | Diameter<br>(µm)          | Lab<br>(psi)                                        | Res Con<br>(psi)         | Conditions<br>(psi)      | Conditions<br>(psi)    | Oil-Water<br>(feet)       | Gas-Water<br>(feet)                   |
| 1.00                | 0.0                    | 0.0                       | 0.0                    | 0.0                             | 211                       | 0.20                                                | 0.14                     | 0.11                     | 0.07                   | 0.64                      | 0.40                                  |
| 2.73                | 1.0                    | 3.3                       | 0.0                    | 0.0                             | 77.6                      | 0.54                                                | 0.37                     | 0.31                     | 0.19                   | 1.75                      | 1.09                                  |
| 3.18<br>3.73        | 0.4                    | 5.7<br>4.3                | 0.0                    | 0.0                             | 56.9                      | 0.62                                                | 0.43                     | 0.36                     | 0.23 0.26              | 2.05<br>2.40              | 1.27                                  |
| 4.38                | 0.6                    | 4.8                       | 0.0                    | 0.0                             | 48.4                      | 0.86                                                | 0.60                     | 0.50                     | 0.31                   | 2.82                      | 1.76                                  |
| 5.18<br>5.98        | 0.7                    | 5.5<br>6.1                | 0.0                    | 0.0                             | 41.0<br>35.5              | 1.02                                                | 0.71                     | 0.59                     | 0.37                   | 3.34<br>3.85              | 2.08                                  |
| 6.97                | 0.7                    | 6.8                       | 0.0                    | 0.0                             | 30.4                      | 1.37                                                | 0.95                     | 0.80                     | 0.49                   | 4.49                      | 2.80                                  |
| 8.27<br>9.97        | 0.6                    | 8.2                       | 0.0                    | 0.0                             | 25.6                      | 1.62                                                | 1.13                     | 0.95                     | 0.59                   | 5.33<br>6.42              | 3.32<br>3.97                          |
| 11.5                | 0.6                    | 8.7                       | 0.0                    | 0.0                             | 18.5                      | 2.25                                                | 1.56                     | 1.32                     | 0.82                   | 7.43                      | 4.59                                  |
| 13.5<br>15.5        | 0.8<br>0.6             | 9.5<br>10.1               | 0.0<br>0.0             | 0.0<br>0.0                      | 15.7<br>13.7              | 2.65<br>3.04                                        | 1.84<br>2.11             | 1.54<br>1.77             | 0.95                   | 8.66<br>10.0              | 5.41<br>6.21                          |
| 18.5                | 0.6                    | 10.6                      | 0.0                    | 0.0                             | 11.5                      | 3.63                                                | 2.52                     | 2.12                     | 1.31                   | 11.9                      | 7.41                                  |
| 21.6                | 0.6                    | 11.2 12.0                 | 0.0                    | 0.0                             | 9.83<br>8.39              | 4.24<br>4.96                                        | 2.94                     | 2.47                     | 1.53                   | 13.9                      | 8.65<br>10.1                          |
| 30.0                | 0.6                    | 12.6                      | 0.0                    | 0.0                             | 7.08                      | 5.88                                                | 4.08                     | 3.43                     | 2.12                   | 19.3                      | 12.0                                  |
| 37.2<br>47.2        | 0.4                    | 12.9                      | 0.0                    | 0.0                             | 5.70<br>4.49              | 7.29                                                | 5.06                     | 4.26<br>5.40             | 2.64                   | 24.0<br>30.4              | 14.9<br>18.9                          |
| 56.6                | 1.2                    | 14.8                      | 1.4                    | 1.4                             | 3.75                      | 11.1                                                | 7.71                     | 6.48                     | 4.01                   | 36.5                      | 22.7                                  |
| 66.3<br>80.4        | 1.4                    | 16.2<br>18.4              | 1.6                    | 3.0                             | 3.20                      | 13.0                                                | 9.03                     | 7.59                     | 4.70                   | 42.7                      | 26.6<br>32.4                          |
| 93.0                | 2.6                    | 21.0                      | 3.0                    | 8.6                             | 2.04                      | 18.2                                                | 12.6                     | 10.6                     | 6.56                   | 59.6                      | 37.1                                  |
| 111                 | 3.4                    | 24.4                      | 3.9                    | 12.5                            | 1.91                      | 21.8                                                | 15.1                     | 12.7                     | 7.86                   | 71.5                      | 44.4                                  |
| 129                 | 3.6                    | 31.5                      | 4.2                    | 20.7                            | 1.65                      | 25.5                                                | 20.7                     | 14.8                     | 9.16                   | 83.5<br>98.2              | 60.9                                  |
| 179                 | 3.8                    | 35.3                      | 4.4                    | 25.1                            | 1.18                      | 35.1                                                | 24.4                     | 20.5                     | 12.7                   | 115                       | 71.8                                  |
| 210<br>247          | 4.1                    | 39.4<br>44.0              | 4.7<br>5.4             | 29.8<br>35.2                    | 1.01                      | 41.2                                                | 28.6                     | 24.0<br>28.3             | 14.9<br>17.5           | 135                       | 84.1<br>98.8                          |
| 292                 | 4.7                    | 48.7                      | 5.4                    | 40.6                            | 0.726                     | 57.3                                                | 39.8                     | 33.4                     | 20.7                   | 188                       | 117                                   |
| 343<br>401          | 6.0<br>5.8             | 54.7<br>60.5              | 6.9<br>6.7             | 47.5<br>54.2                    | 0.619                     | 67.3<br>78.6                                        | 46.7<br>54.6             | 39.3                     | 24.3                   | 221                       | 137                                   |
| 472                 | 7.3                    | 67.8                      | 8.5                    | 62.7                            | 0.449                     | 92.5                                                | 64.2                     | 54.0                     | 33.4                   | 304                       | 189                                   |
| 553                 | 7.9                    | 75.7                      | 9.2                    | 71.9                            | 0.383                     | 108                                                 | 75.0                     | 63.3                     | 39.2                   | 356                       | 221                                   |
| 647<br>757          | 8.9                    | 84.6<br>95.9              | 10.3                   | 82.2<br>95.3                    | 0.328                     | 127                                                 | 88.2<br>103              | /4.0<br>86.6             | 45.8<br>53.6           | 416<br>487                | 259<br>303                            |
| 887                 | 2.1                    | 98.0                      | 2.5                    | 97.7                            | 0.239                     | 174                                                 | 121                      | 102                      | 63.1                   | 574                       | 356                                   |
| 1048<br>1227        | 0.3                    | 98.4<br>98 7              | 0.4                    | 98.1<br>98.4                    | 0.202                     | 205<br>241                                          | 142<br>167               | 120<br>140               | 74.3<br>86 7           | 675<br>788                | 418<br>491                            |
| 1439                | 0.3                    | 99.0                      | 0.4                    | 98.8                            | 0.147                     | 282                                                 | 196                      | 165                      | 102                    | 927                       | 576                                   |
| 1688                | 0.4                    | 99.4<br>99.5              | 0.4                    | 99.3<br>99.4                    | 0.126                     | 331                                                 | 230                      | 193                      | 119                    | 1082                      | 676<br>732                            |
| 2142                | 0.2                    | 99.7                      | 0.2                    | 99.4<br>99.6                    | 0.0990                    | 420                                                 | 292                      | 245                      | 129                    | 1382                      | 859                                   |
| 2510                | 0.1                    | 99.8                      | 0.1                    | 99.7                            | 0.0845                    | 492                                                 | 342                      | 287                      | 178                    | 1618                      | 1006                                  |
| 2945<br>3449        | 0.1                    | 100.0                     | 0.1                    | 100.0                           | 0.0720                    | 676                                                 | 469                      | 395                      | 209                    | 2227                      | 1379                                  |
| 4040                | 0.0                    | 100.0                     | 0.0                    | 100.0                           | 0.0525                    | 792                                                 | 550                      | 462                      | 286                    | 2600                      | 1618                                  |
| 4728<br>5114        | 0.0<br>0.0             | 100.0<br>100.0            | 0.0                    | 100.0<br>100.0                  | 0.0448 0.0415             | 927<br>1003                                         | 644<br>697               | 541<br>585               | 335<br>362             | 3045<br>3291              | 1894<br>2050                          |
| 6002                | 0.0                    | 100.0                     | 0.0                    | 100.0                           | 0.0353                    | 1177                                                | 817                      | 687                      | 425                    | 3864                      | 2403                                  |
| 7033<br>7895        | 0.0                    | 100.0<br>100.0            | 0.0                    | 100.0<br>100.0                  | 0.0301                    | 1379<br>1548                                        | 958<br>1075              | 805<br>904               | 498<br>560             | 4527<br>5091              | 2818<br>3162                          |
| 8920                | 0.0                    | 100.0                     | 0.0                    | 100.0                           | 0.0238                    | 1749                                                | 1215                     | 1021                     | 632                    | 5745                      | 3574                                  |
| 9649<br>10452       | 0.0                    | 100.0                     | 0.0                    | 100.0                           | 0.0220                    | 1892                                                | 1314                     | 1104                     | 683<br>740             | 6209<br>6727              | 3865<br>4185                          |
| 12283               | 0.0                    | 100.0                     | 0.0                    | 100.0                           | 0.0173                    | 2408                                                | 1672                     | 1406                     | 870                    | 7909                      | 4918                                  |
| 14333               | 0.0                    | 100.0                     | 0.0                    | 100.0                           | 0.0148                    | 2810                                                | 1951                     | 1640                     | 1015                   | 9227                      | 5738                                  |
| 18481               | 0.0                    | 100.0                     | 0.0                    | 100.0                           | 0.0129<br>0.0115          | 3212<br>3624                                        | 2231<br>2517             | 2115                     | 1309                   | 10555                     | 6562<br>7403                          |
| 20481               | 0.0                    | 100.0                     | 0.0                    | 100.0                           | 0.0104                    | 4016                                                | 2789                     | 2344                     | 1451                   | 13191                     | 8203                                  |
| 23149<br>25064      | 0.0<br>0 0             | 100.0<br>100.0            | 0.0                    | 100.0<br>100 0                  | 0.0092 0.0085             | 4539<br>4915                                        | 3152<br>3413             | 2649<br>2868             | 1640<br>1775           | 14909<br>16136            | 9271<br>10038                         |
| 27135               | 0.0                    | 100.0                     | 0.0                    | 100.0                           | 0.0078                    | 5321                                                | 3695                     | 3105                     | 1922                   | 17473                     | 10868                                 |
| 29376               | 0.0                    | 100.0                     | 0.0                    | 100.0                           | 0.0072                    | 5760                                                | 4000                     | 3362                     | 2081                   | 18918                     | 11765                                 |
| 34421               | 0.0                    | 100.0                     | 0.0                    | 100.0                           | 0.0062                    | 6749                                                | 4687                     | 3939                     | 2438                   | 20482 22164               | 12/38                                 |
| 37192               | 0.0                    | 100.0                     | 0.0                    | 100.0                           | 0.0057                    | 7293                                                | 5065                     | 4256                     | 2635                   | 23955                     | 14897                                 |
| 40343<br>43591      | 0.0                    | 100.0<br>100.0            | 0.0                    | 100.0<br>100.0                  | 0.0053<br>0.0049          | 7910<br>8547                                        | 5493<br>5935             | 4617<br>4989             | 2858<br>3088           | 25982<br>28073            | 16156<br>17456                        |
| 47291               | 0.0                    | 100.0                     | 0.0                    | 100.0                           | 0.0045                    | 9273                                                | 6440                     | 5412                     | 3350                   | 30455                     | 18941                                 |
| 51172               | 0.0                    | 100.0                     | 0.0                    | 100.0                           | 0.0041                    | 10034                                               | 6968                     | 5856                     | 3625                   | 32955                     | 20494                                 |
| 55387               | 0.0                    | 100.0                     | 0.0                    | 100.0                           | 0.0038                    | 10860                                               | /542                     | 6339                     | 3924                   | 35673                     | 22182                                 |



(B) Capillary Pressure Plot



ACS LABORATORIES PTY. LTD.

# WellSale-13Sample Depth748.1 m



| Client         | Cassaianaa            | Viatoria         |              | Donaity (     | readiants (nsi/foot) | Conversion Parameters (dynes/cm) |                     |                |                 |              |                 |  |  |
|----------------|-----------------------|------------------|--------------|---------------|----------------------|----------------------------------|---------------------|----------------|-----------------|--------------|-----------------|--|--|
| Well           | Sala 12               | A VICTOLIA       |              | Density       | Typical              |                                  | Con                 | air/water      | air/oil         | oil/water    | CO./water       |  |  |
| wen            | Sule-15               |                  |              | Water:        | 0.440                | Laboratory Thet                  | я                   | 0.0            | 0.0             | 30.0         | 0.0             |  |  |
| Test Method    | Air/Mercury           | Capillary Pressu | re           | Oil:          | 0.330                | Laboratory IFT                   | u                   | 72.0           | 24.0            | 48.0         | 72.0            |  |  |
|                |                       |                  |              | Gas:          | 0.100                | Reservoir Theta                  |                     | 0.0            |                 | 30.0         | 0.0             |  |  |
| Sample         | S13-1                 |                  |              |               |                      | Reservoir IFT                    | Reservoir IFT       |                |                 | 30.0         | 26.0            |  |  |
| Depth          | 748.10 m              |                  |              | CO2 Density   | 0.180                | Laboratory Tcos                  | Theta               | 72.0           | 24.0            | 42.0         | 72.0            |  |  |
|                |                       |                  |              |               |                      | Reservoir TcosT                  | heta                | 50.0           |                 | 26.0         | 26.0            |  |  |
| D              | )                     | 0.0/1            |              | Contant       | Estimated Column     | Entry P                          | ressure (psia)      | Displacement P | Pressure (psia) | Threshold I  | Pressure (psia) |  |  |
| rore radius (µ | ore radius (μm) 0.061 |                  |              |               | neight (leet)        | 1749                             | Kes Con             | 1811           | Resv            | 1922         | Resv            |  |  |
|                |                       |                  |              | G-W           | 701                  | 343                              | 238                 | 355            | 247             | 377          | 262             |  |  |
|                |                       |                  |              | O-W           | 1126                 | 114                              | 124                 | 118            | 128             | 126          | 136             |  |  |
|                |                       |                  |              | CO2-W         | 349                  | 343                              | 124                 | 355            | 128             | 377          | 136             |  |  |
|                |                       |                  |              |               |                      |                                  |                     |                |                 |              |                 |  |  |
|                | _                     | _                |              |               | _                    | Equivalent                       | Injection Pressures | Oil/Brine      | Oil/Brine       | Height Above | Height Above    |  |  |
| Dessentes      | Raw                   | v Data           | Conforma     | nce Corrected | Pore                 | Air/Brine                        | Air/Brine           | Lab            | Reservoir       | Free Water   | Free Water      |  |  |
| (nsia)         | (percent)             | (nercent)        | (nercent)    | (nercent)     | (um)                 | (nsi)                            | (nsi)               | (nsi)          | (nsi)           | (feet)       | (feet)          |  |  |
| (point)        | (percent)             | (percent)        | (percent)    | (percent)     | (J)                  | (551)                            | (1997)              | (psi)          | (151)           | (1001)       | (1001)          |  |  |
| 1.00           | 0.0                   | 0.0              | 0.0          | 0.0           | 211                  | 0.20                             | 0.14                | 0.11           | 0.07            | 0.64         | 0.40            |  |  |
| 1.00           | 0.0                   | 0.0              | 0.0          | 0.0           | 211                  | 0.20                             | 0.14                | 0.11           | 0.07            | 0.64         | 0.40            |  |  |
| 2 73           | 0.4                   | 1.0              | 0.0          | 0.0           | 77.6                 | 0.54                             | 0.27                | 0.25           | 0.14            | 1.20         | 1.09            |  |  |
| 3.18           | 0.2                   | 1.6              | 0.0          | 0.0           | 66.7                 | 0.62                             | 0.43                | 0.36           | 0.23            | 2.05         | 1.27            |  |  |
| 3.73           | 0.2                   | 1.8              | 0.0          | 0.0           | 56.9                 | 0.73                             | 0.51                | 0.43           | 0.26            | 2.40         | 1.49            |  |  |
| 4.38           | 0.2                   | 2.0              | 0.0          | 0.0           | 48.4                 | 0.86                             | 0.60                | 0.50           | 0.31            | 2.82         | 1.76            |  |  |
| 5.18           | 0.2                   | 2.2              | 0.0          | 0.0           | 41.0                 | 1.02                             | 0.71                | 0.59           | 0.37            | 3.34         | 2.08            |  |  |
| 5.98           | 0.2                   | 2.4              | 0.0          | 0.0           | 35.5<br>30.4         | 1.1/                             | 0.81                | 0.08           | 0.42            | 5.85<br>1 10 | 2.39            |  |  |
| 8.27           | 0.2                   | 2.8              | 0.0          | 0.0           | 25.6                 | 1.62                             | 1.13                | 0.95           | 0.49            | 5.33         | 3.32            |  |  |
| 9.97           | 0.3                   | 3.0              | 0.0          | 0.0           | 21.3                 | 1.95                             | 1.35                | 1.14           | 0.71            | 6.42         | 3.97            |  |  |
| 11.5           | 0.2                   | 3.2              | 0.0          | 0.0           | 18.5                 | 2.25                             | 1.56                | 1.32           | 0.82            | 7.43         | 4.59            |  |  |
| 13.5           | 0.2                   | 3.4              | 0.0          | 0.0           | 15.7                 | 2.65                             | 1.84                | 1.54           | 0.95            | 8.66         | 5.41            |  |  |
| 15.5           | 0.2                   | 3.6              | 0.0          | 0.0           | 13.7                 | 3.04                             | 2.11                | 1.77           | 1.10            | 10.0         | 6.21            |  |  |
| 21.6           | 0.2                   | 3.8<br>4.0       | 0.0          | 0.0           | 9.83                 | 3.03<br>4.24                     | 2.52                | 2.12           | 1.51            | 11.9         | 7.41            |  |  |
| 25.3           | 0.2                   | 4.2              | 0.0          | 0.0           | 8.39                 | 4.96                             | 3.44                | 2.90           | 1.80            | 16.4         | 10.1            |  |  |
| 30.0           | 0.3                   | 4.5              | 0.0          | 0.0           | 7.08                 | 5.88                             | 4.08                | 3.43           | 2.12            | 19.3         | 12.0            |  |  |
| 37.2           | 0.1                   | 4.5              | 0.0          | 0.0           | 5.70                 | 7.29                             | 5.06                | 4.26           | 2.64            | 24.0         | 14.9            |  |  |
| 47.2           | 0.1                   | 4.6              | 0.0          | 0.0           | 4.49                 | 9.25                             | 6.42                | 5.40           | 3.34            | 30.4         | 18.9            |  |  |
| 56.6           | 0.1                   | 4.7              | 0.1          | 0.1           | 3.75                 | 11.1                             | 7.71                | 6.48<br>7.50   | 4.01            | 36.5         | 22.7            |  |  |
| 80.4           | 0.1                   | 4.8              | 0.1          | 0.2           | 2.64                 | 15.0                             | 9.03                | 9.20           | 5 70            | 51.8         | 32.4            |  |  |
| 93.0           | 0.1                   | 5.0              | 0.1          | 0.4           | 2.28                 | 18.2                             | 12.6                | 10.6           | 6.56            | 59.6         | 37.1            |  |  |
| 111            | 0.1                   | 5.1              | 0.2          | 0.6           | 1.91                 | 21.8                             | 15.1                | 12.7           | 7.86            | 71.5         | 44.4            |  |  |
| 129            | 0.1                   | 5.3              | 0.1          | 0.7           | 1.65                 | 25.3                             | 17.6                | 14.8           | 9.16            | 83.3         | 51.8            |  |  |
| 152            | 0.2                   | 5.4              | 0.2          | 0.9           | 1.39                 | 29.8                             | 20.7                | 17.4           | 10.8            | 98.2         | 60.9            |  |  |
| 210            | 0.2                   | 5.6              | 0.2          | 1.1           | 1.18                 | 35.1                             | 24.4                | 20.5           | 12.7            | 115          | 71.8            |  |  |
| 247            | 0.2                   | 6.0              | 0.2          | 1.4           | 0.860                | 48.4                             | 33.6                | 28.3           | 17.5            | 159          | 98.8            |  |  |
| 292            | 0.2                   | 6.2              | 0.2          | 1.6           | 0.726                | 57.3                             | 39.8                | 33.4           | 20.7            | 188          | 117             |  |  |
| 343            | 0.2                   | 6.4              | 0.2          | 1.9           | 0.619                | 67.3                             | 46.7                | 39.3           | 24.3            | 221          | 137             |  |  |
| 401            | 0.3                   | 6.7              | 0.3          | 2.1           | 0.528                | 78.6                             | 54.6                | 45.9           | 28.4            | 258          | 161             |  |  |
| 4/2            | 0.3                   | 6.9<br>7.2       | 0.3          | 2.4           | 0.449                | 92.5                             | 64.2                | 54.0           | 33.4            | 304          | 189             |  |  |
| 647            | 0.3                   | 7.5              | 0.3          | 3.1           | 0.328                | 103                              | 88.2                | 74.0           | 45.8            | 416          | 259             |  |  |
| 757            | 0.4                   | 7.9              | 0.4          | 3.5           | 0.280                | 148                              | 103                 | 86.6           | 53.6            | 487          | 303             |  |  |
| 887            | 0.5                   | 8.4              | 0.5          | 4.0           | 0.239                | 174                              | 121                 | 102            | 63.1            | 574          | 356             |  |  |
| 1048           | 0.6                   | 9.0              | 0.6          | 4.6           | 0.202                | 205                              | 142                 | 120            | 74.3            | 675          | 418             |  |  |
| 1/22/          | 0.8                   | 9.8              | 0.8          | 5.4           | 0.1/3                | 241                              | 16/                 | 140            | 86./            | /88          | 491             |  |  |
| 1688           | 2.0                   | 12.9             | 2.1          | 8.7           | 0.126                | 331                              | 230                 | 193            | 119             | 1082         | 676             |  |  |
| 1828           | 2.1                   | 15.0             | 2.2          | 10.9          | 0.116                | 358                              | 249                 | 209            | 129             | 1173         | 732             |  |  |
| 2142           | 10.1                  | 25.1             | 10.6         | 21.4          | 0.0990               | 420                              | 292                 | 245            | 152             | 1382         | 859             |  |  |
| 2510           | 25.2                  | 50.2             | 26.4         | 47.8          | 0.0845               | 492                              | 342                 | 287            | 178             | 1618         | 1006            |  |  |
| 2945           | 36.3                  | 86.5             | 38.0<br>13.6 | 85.8<br>99.4  | 0.0720               | 577                              | 401                 | 337            | 209             | 2227         | 11/9            |  |  |
| 4040           | 0.0                   | 99.5             | 0.0          | 99.4          | 0.0525               | 792                              | 550                 | 462            | 286             | 2600         | 1618            |  |  |
| 4728           | 0.2                   | 99.7             | 0.2          | 99.6          | 0.0448               | 927                              | 644                 | 541            | 335             | 3045         | 1894            |  |  |
| 5114           | 0.2                   | 99.9             | 0.2          | 99.9          | 0.0415               | 1003                             | 697                 | 585            | 362             | 3291         | 2050            |  |  |
| 6002           | 0.1                   | 100.0            | 0.1          | 100.0         | 0.0353               | 1177                             | 817                 | 687            | 425             | 3864         | 2403            |  |  |
| 7033           | 0.0                   | 100.0            | 0.0          | 100.0         | 0.0301               | 1379                             | 958                 | 805            | 498             | 4527         | 2818            |  |  |
| 8920           | 0.0                   | 100.0            | 0.0          | 100.0         | 0.0238               | 1749                             | 1215                | 1021           | 632             | 5745         | 3574            |  |  |
| 9649           | 0.0                   | 100.0            | 0.0          | 100.0         | 0.0220               | 1892                             | 1314                | 1104           | 683             | 6209         | 3865            |  |  |
| 10452          | 0.0                   | 100.0            | 0.0          | 100.0         | 0.0203               | 2049                             | 1423                | 1196           | 740             | 6727         | 4185            |  |  |
| 12283          | 0.0                   | 100.0            | 0.0          | 100.0         | 0.0173               | 2408                             | 1672                | 1406           | 870             | 7909         | 4918            |  |  |
| 14333          | 0.0                   | 100.0            | 0.0          | 100.0         | 0.0148               | 2810                             | 1951                | 1640           | 1015            | 9227         | 5/38<br>6562    |  |  |
| 18481          | 0.0                   | 100.0            | 0.0          | 100.0         | 0.0115               | 3624                             | 2517                | 2115           | 1309            | 11900        | 7403            |  |  |
| 20481          | 0.0                   | 100.0            | 0.0          | 100.0         | 0.0104               | 4016                             | 2789                | 2344           | 1451            | 13191        | 8203            |  |  |
| 23149          | 0.0                   | 100.0            | 0.0          | 100.0         | 0.0092               | 4539                             | 3152                | 2649           | 1640            | 14909        | 9271            |  |  |
| 25064          | 0.0                   | 100.0            | 0.0          | 100.0         | 0.0085               | 4915                             | 3413                | 2868           | 1775            | 16136        | 10038           |  |  |
| 2/135          | 0.0                   | 100.0            | 0.0          | 100.0         | 0.0078               | 5321                             | 3695                | 3105           | 1922            | 17473        | 10868           |  |  |
| 31804          | 0.0                   | 100.0            | 0.0          | 100.0         | 0.0072               | 6236                             | 4331                | 3640           | 2081            | 20482        | 12738           |  |  |
| 34421          | 0.0                   | 100.0            | 0.0          | 100.0         | 0.0062               | 6749                             | 4687                | 3939           | 2438            | 22164        | 13785           |  |  |
| 37192          | 0.0                   | 100.0            | 0.0          | 100.0         | 0.0057               | 7293                             | 5065                | 4256           | 2635            | 23955        | 14897           |  |  |
| 40343          | 0.0                   | 100.0            | 0.0          | 100.0         | 0.0053               | 7910                             | 5493                | 4617           | 2858            | 25982        | 16156           |  |  |
| 43591          | 0.0                   | 100.0            | 0.0          | 100.0         | 0.0049               | 8547                             | 5935                | 4989           | 3088            | 28073        | 17456           |  |  |
| 47291<br>51172 | 0.0                   | 100.0            | 0.0          | 100.0         | 0.0045               | 9273<br>10034                    | 0440<br>6968        | 5856           | 3625            | 30455        | 204941          |  |  |
| 55387          | 0.0                   | 100.0            | 0.0          | 100.0         | 0.0038               | 10860                            | 7542                | 6339           | 3924            | 35673        | 22182           |  |  |
| 59880          | 0.0                   | 100.0            | 0.0          | 100.0         | 0.0035               | 11741                            | 8153                | 6853           | 4242            | 38564        | 23979           |  |  |







(C) Pore Size Distribution plot



| Client         | Geoscience        | A Victoria           |            | Density G                | radients (psi/foot) | Conversion Parameters (dynes/cm) |                      |                |                |                         |                         |  |  |
|----------------|-------------------|----------------------|------------|--------------------------|---------------------|----------------------------------|----------------------|----------------|----------------|-------------------------|-------------------------|--|--|
| Well           | Sale-13           |                      |            |                          | Typical             |                                  |                      | air/water      | air/oil        | oil/water               | CO <sub>2</sub> /water  |  |  |
|                |                   |                      |            | Water:                   | 0.440               | Laboratory Thet                  | a                    | 0.0            | 0.0            | 30.0                    | 0.0                     |  |  |
| Test Method    | Air/Mercury       | Capillary Pressu     | ire        | Oil:                     | 0.330               | Laboratory IFT                   |                      | 72.0           | 24.0           | 48.0                    | 72.0                    |  |  |
| с I            | 612.2             |                      |            | Gas:                     | 0.100               | Reservoir Theta                  |                      | 0.0            |                | 30.0                    | 0.0                     |  |  |
| Sample         | 513-2<br>705.60 m |                      |            | CO Density               | 0.205               | Laboratory Teor                  | Thata                | 72.0           | 24.0           | 30.0                    | 20.0                    |  |  |
| Deptii         | 795.00 III        |                      |            | CO <sub>2</sub> Delisity | 0.205               | Reservoir Tcos                   | Theta                | 50.0           | 24.0           | 26.0                    | 26.0                    |  |  |
|                |                   |                      |            |                          | Estimated Column    | Entry P                          | ressure (psia)       | Displacement P | ressure (psia) | Threshold P             | ressure (psia)          |  |  |
| Pore radius (µ | ι <b>m</b> )      | 0.075                |            | System                   | Height (feet)       | Lab                              | Res Con              | Lab            | Resv           | Lab                     | Resv                    |  |  |
|                |                   |                      |            | A-Hg                     | na<br>570           | 1421                             | -                    | 1682           | -              | 1962                    | -                       |  |  |
|                |                   |                      |            | 0-W                      | 915                 | 92.9                             | 194                  | 110            | 119            | 128                     | 139                     |  |  |
|                |                   |                      |            | CO <sub>2</sub> -W       | 293                 | 279                              | 101                  | 330            | 119            | 385                     | 139                     |  |  |
|                |                   |                      |            | ,                        |                     |                                  | ÷                    |                |                |                         |                         |  |  |
|                | _                 | _                    |            |                          | _                   | Equivalent                       | Injection Pressures  | Oil/Brine      | Oil/Brine      | Height Above            | Height Above            |  |  |
| Pressure       | Intrusion         | / Data<br>Saturation | Conforma   | nce Corrected            | Pore                | Air/Brine                        | Air/Brine<br>Res Con | Lab            | Conditions     | Free Water<br>Oil Water | Free Water<br>Gas Water |  |  |
| (psia)         | (percent)         | (percent)            | (percent)  | (percent)                | (µm)                | (psi)                            | (psi)                | (psi)          | (psi)          | (feet)                  | (feet)                  |  |  |
|                | _                 |                      |            |                          |                     |                                  |                      |                |                |                         |                         |  |  |
| 1.00           | 0.0               | 0.0                  | 0.0        | 0.0                      | 211                 | 0.20                             | 0.14                 | 0.11           | 0.07           | 0.64                    | 0.40                    |  |  |
| 1.98           | 0.3               | 0.3                  | 0.0        | 0.0                      | 107                 | 0.39                             | 0.27                 | 0.23           | 0.14           | 1.28                    | 0.79                    |  |  |
| 2.73           | 0.1               | 0.5                  | 0.0        | 0.0                      | 77.6                | 0.54                             | 0.37                 | 0.31           | 0.19           | 1.75                    | 1.09                    |  |  |
| 3.18           | 0.1               | 0.5                  | 0.0        | 0.0                      | 66.7                | 0.62                             | 0.43                 | 0.36           | 0.23           | 2.05                    | 1.27                    |  |  |
| 5.75<br>4.38   | 0.1               | 0.6                  | 0.0        | 0.0                      | 56.9<br>48.4        | 0.75                             | 0.51                 | 0.43           | 0.26           | 2.40                    | 1.49                    |  |  |
| 5.18           | 0.1               | 0.7                  | 0.0        | 0.0                      | 41.0                | 1.02                             | 0.71                 | 0.59           | 0.37           | 3.34                    | 2.08                    |  |  |
| 5.98           | 0.2               | 0.9                  | 0.0        | 0.0                      | 35.5                | 1.17                             | 0.81                 | 0.68           | 0.42           | 3.85                    | 2.39                    |  |  |
| 6.97           | 0.1               | 1.0                  | 0.0        | 0.0                      | 30.4                | 1.37                             | 0.95                 | 0.80           | 0.49           | 4.49                    | 2.80                    |  |  |
| 8.27           | 0.1               | 1.1                  | 0.0        | 0.0                      | 25.6                | 1.62                             | 1.13                 | 0.95           | 0.59           | 5.33                    | 3.32                    |  |  |
| 9.97           | 0.1               | 1.2                  | 0.0        | 0.0                      | 21.3<br>18 5        | 1.95                             | 1.35                 | 1.14           | 0.71           | 6.42<br>7.43            | 3.97<br>4.59            |  |  |
| 13.5           | 0.1               | 1.4                  | 0.0        | 0.0                      | 15.7                | 2.25                             | 1.84                 | 1.54           | 0.82           | 8.66                    | 5.41                    |  |  |
| 15.5           | 0.1               | 1.6                  | 0.0        | 0.0                      | 13.7                | 3.04                             | 2.11                 | 1.77           | 1.10           | 10.0                    | 6.21                    |  |  |
| 18.5           | 0.1               | 1.7                  | 0.0        | 0.0                      | 11.5                | 3.63                             | 2.52                 | 2.12           | 1.31           | 11.9                    | 7.41                    |  |  |
| 21.6           | 0.1               | 1.8                  | 0.0        | 0.0                      | 9.83                | 4.24                             | 2.94                 | 2.47           | 1.53           | 13.9                    | 8.65                    |  |  |
| 25.5           | 0.1               | 2.0                  | 0.0        | 0.0                      | 8.39<br>7.08        | 4.90                             | 5.44<br>4.08         | 2.90           | 2.12           | 10.4                    | 10.1                    |  |  |
| 37.2           | 0.0               | 2.6                  | 0.0        | 0.0                      | 5.70                | 7.29                             | 5.06                 | 4.26           | 2.64           | 24.0                    | 14.9                    |  |  |
| 47.2           | 0.0               | 2.6                  | 0.0        | 0.0                      | 4.49                | 9.25                             | 6.42                 | 5.40           | 3.34           | 30.4                    | 18.9                    |  |  |
| 56.6           | 0.0               | 2.6                  | 0.0        | 0.0                      | 3.75                | 11.1                             | 7.71                 | 6.48           | 4.01           | 36.5                    | 22.7                    |  |  |
| 66.3           | 0.0               | 2.7                  | 0.0        | 0.0                      | 3.20                | 13.0                             | 9.03                 | 7.59           | 4.70           | 42.7                    | 26.6                    |  |  |
| 80.4<br>93.0   | 0.1               | 2.8                  | 0.0        | 0.0                      | 2.64                | 15.8                             | 12.6                 | 9.20           | 5.70           | 59.6                    | 32.4                    |  |  |
| 111            | 0.2               | 3.0                  | 0.0        | 0.0                      | 1.91                | 21.8                             | 15.1                 | 12.7           | 7.86           | 71.5                    | 44.4                    |  |  |
| 129            | 0.2               | 3.3                  | 0.0        | 0.0                      | 1.65                | 25.3                             | 17.6                 | 14.8           | 9.16           | 83.3                    | 51.8                    |  |  |
| 152            | 0.3               | 3.6                  | 0.0        | 0.0                      | 1.39                | 29.8                             | 20.7                 | 17.4           | 10.8           | 98.2                    | 60.9                    |  |  |
| 210            | 0.3               | 3.8<br>4.1           | 0.0        | 0.0                      | 1.18                | 35.1<br>41.2                     | 24.4                 | 20.5           | 12.7           | 115                     | 71.8                    |  |  |
| 247            | 0.3               | 4.4                  | 0.0        | 0.0                      | 0.860               | 48.4                             | 33.6                 | 28.3           | 17.5           | 159                     | 98.8                    |  |  |
| 292            | 0.4               | 4.7                  | 0.0        | 0.0                      | 0.726               | 57.3                             | 39.8                 | 33.4           | 20.7           | 188                     | 117                     |  |  |
| 343            | 0.4               | 5.1                  | 0.0        | 0.0                      | 0.619               | 67.3                             | 46.7                 | 39.3           | 24.3           | 221                     | 137                     |  |  |
| 401            | 0.5               | 5.7                  | 0.0        | 0.0                      | 0.528               | 78.6                             | 54.6                 | 45.9           | 28.4           | 258                     | 161                     |  |  |
| 553            | 0.5               | 6.7                  | 0.0        | 0.0                      | 0.383               | 92.5<br>108                      | 75.0                 | 63.3           | 39.2           | 356                     | 221                     |  |  |
| 647            | 0.7               | 7.4                  | 0.0        | 0.0                      | 0.328               | 127                              | 88.2                 | 74.0           | 45.8           | 416                     | 259                     |  |  |
| 757            | 0.8               | 8.2                  | 0.0        | 0.0                      | 0.280               | 148                              | 103                  | 86.6           | 53.6           | 487                     | 303                     |  |  |
| 887            | 1.0               | 9.2                  | 0.0        | 0.0                      | 0.239               | 174                              | 121                  | 102            | 63.1           | 574                     | 356                     |  |  |
| 1048           | 1.2               | 10.4                 | 0.0        | 0.0                      | 0.202               | 205                              | 142                  | 120            | 74.3           | 675<br>788              | 418                     |  |  |
| 1439           | 1.9               | 13.8                 | 2.1        | 2.1                      | 0.147               | 282                              | 196                  | 165            | 102            | 927                     | 576                     |  |  |
| 1688           | 2.6               | 16.4                 | 2.9        | 5.1                      | 0.126               | 331                              | 230                  | 193            | 119            | 1082                    | 676                     |  |  |
| 1828           | 2.1               | 18.5                 | 2.4        | 7.5                      | 0.116               | 358                              | 249                  | 209            | 129            | 1173                    | 732                     |  |  |
| 2142           | 6.2               | 24.7                 | 7.0        | 14.5                     | 0.0990              | 420                              | 292                  | 245            | 152            | 1382                    | 859                     |  |  |
| 2945           | 10.9              | 44.3                 | 12.4       | 36.7                     | 0.0720              | 577                              | 401                  | 337            | 209            | 1900                    | 1179                    |  |  |
| 3449           | 8.0               | 52.3                 | 9.1        | 45.8                     | 0.0615              | 676                              | 469                  | 395            | 245            | 2227                    | 1379                    |  |  |
| 4040           | 10.6              | 62.9                 | 12.0       | 57.9                     | 0.0525              | 792                              | 550                  | 462            | 286            | 2600                    | 1618                    |  |  |
| 4728           | 14.1              | 77.0                 | 16.0       | 73.9                     | 0.0448              | 927                              | 644                  | 541            | 335            | 3045                    | 1894                    |  |  |
| 6002           | 4.5               | 01.5<br>88.2         | 5.1<br>7.6 | 79.0<br>86.6             | 0.0415              | 1005                             | 817                  | 585<br>687     | 425            | 3864                    | 2403                    |  |  |
| 7033           | 5.2               | 93.5                 | 6.0        | 92.6                     | 0.0301              | 1379                             | 958                  | 805            | 498            | 4527                    | 2818                    |  |  |
| 7895           | 3.3               | 96.8                 | 3.8        | 96.3                     | 0.0269              | 1548                             | 1075                 | 904            | 560            | 5091                    | 3162                    |  |  |
| 8920           | 2.5               | 99.3                 | 2.8        | 99.2                     | 0.0238              | 1749                             | 1215                 | 1021           | 632            | 5745                    | 3574                    |  |  |
| 9649           | 0.6               | 99.9<br>100.0        | 0.7        | 99.8<br>100 0            | 0.0220              | 1892                             | 1314                 | 1104           | 683<br>740     | 6209                    | 3803<br>4185            |  |  |
| 12283          | 0.0               | 100.0                | 0.0        | 100.0                    | 0.0173              | 2408                             | 1672                 | 1406           | 870            | 7909                    | 4918                    |  |  |
| 14333          | 0.0               | 100.0                | 0.0        | 100.0                    | 0.0148              | 2810                             | 1951                 | 1640           | 1015           | 9227                    | 5738                    |  |  |
| 16381          | 0.0               | 100.0                | 0.0        | 100.0                    | 0.0129              | 3212                             | 2231                 | 1875           | 1161           | 10555                   | 6562                    |  |  |
| 18481          | 0.0               | 100.0                | 0.0        | 100.0                    | 0.0115              | 3624                             | 2517                 | 2115           | 1309           | 11900                   | 7403                    |  |  |
| 20481 23149    | 0.0               | 100.0                | 0.0        | 100.0                    | 0.0104              | 4016                             | 3152                 | 2544 2649      | 1451           | 14909                   | 8203<br>9271            |  |  |
| 25064          | 0.0               | 100.0                | 0.0        | 100.0                    | 0.0085              | 4915                             | 3413                 | 2868           | 1775           | 16136                   | 10038                   |  |  |
| 27135          | 0.0               | 100.0                | 0.0        | 100.0                    | 0.0078              | 5321                             | 3695                 | 3105           | 1922           | 17473                   | 10868                   |  |  |
| 29376          | 0.0               | 100.0                | 0.0        | 100.0                    | 0.0072              | 5760                             | 4000                 | 3362           | 2081           | 18918                   | 11765                   |  |  |
| 31804          | 0.0               | 100.0                | 0.0        | 100.0                    | 0.0067              | 6236                             | 4331                 | 3640           | 2253           | 20482                   | 12738                   |  |  |
| 37192          | 0.0               | 100.0                | 0.0        | 100.0                    | 0.0057              | 7293                             | 5065                 | 4256           | 2438           | 23955                   | 13/83                   |  |  |
| 40343          | 0.0               | 100.0                | 0.0        | 100.0                    | 0.0053              | 7910                             | 5493                 | 4617           | 2858           | 25982                   | 16156                   |  |  |
| 43591          | 0.0               | 100.0                | 0.0        | 100.0                    | 0.0049              | 8547                             | 5935                 | 4989           | 3088           | 28073                   | 17456                   |  |  |
| 47291          | 0.0               | 100.0                | 0.0        | 100.0                    | 0.0045              | 9273                             | 6440                 | 5412           | 3350           | 30455                   | 18941                   |  |  |
| 51172          | 0.0               | 100.0                | 0.0        | 100.0                    | 0.0041              | 10034                            | 6968<br>7542         | 5856           | 3625           | 32955<br>35673          | 20494                   |  |  |
| 59880          | 0.0               | 100.0                | 0.0        | 100.0                    | 0.0035              | 11741                            | 8153                 | 6853           | 4242           | 38564                   | 23979                   |  |  |
|                |                   |                      | _          |                          |                     |                                  |                      |                | -              |                         |                         |  |  |



(B) Capillary Pressure Plot



(C) Pore Size Distribution plot
| Well         | Sale-15 |
|--------------|---------|
| Sample Depth | 628.6 m |
|              |         |



| Client          | Geoscience  | AVictoria        |           | Density G               | radients (psi/foot)               |                 | Conv                | version Paramete        | ers (dynes/cm) |                |                        |
|-----------------|-------------|------------------|-----------|-------------------------|-----------------------------------|-----------------|---------------------|-------------------------|----------------|----------------|------------------------|
| Well            | Sale-15     |                  |           | · · · ·                 | Typical                           |                 |                     | air/water               | air/oil        | oil/water      | CO <sub>2</sub> /water |
|                 |             |                  |           | Water:                  | 0.440                             | Laboratory Thet | a                   | 0.0                     | 0.0            | 30.0           | 0.0                    |
| Test Method     | Air/Mercury | Capillary Pressu | ire       | Oil:                    | 0.330                             | Laboratory IFT  |                     | 72.0                    | 24.0           | 48.0           | 72.0                   |
|                 |             |                  |           | Gas:                    | 0.100                             | Reservoir Theta |                     | 0.0                     |                | 30.0           | 0.0                    |
| Sample          | S15         |                  |           |                         |                                   | Reservoir IFT   |                     | 50.0                    |                | 30.0           | 26.0                   |
| Depth           | 628.60 m    |                  |           | CO <sub>2</sub> Density | 0.166                             | Laboratory Tcos | Theta               | 72.0                    | 24.0           | 42.0           | 72.0                   |
|                 |             |                  |           |                         | E-thread Column                   | Reservoir Tcos  | Theta               | 50.0<br>Dianta ann an t |                | 26.0           | 26.0                   |
| Poro radius (u  | m)          | 0.229            |           | System                  | Estimated Column<br>Height (feet) | Entry P         | Res Con             | Lab                     | Resv           | I hreshold P   | Resv                   |
| i ore rautus (µ | m)          | 0.22)            |           | A-Hg                    | na                                | 465             | -                   | 586                     | -              | 620            | -                      |
|                 |             |                  |           | G-W                     | 186                               | 91.2            | 63.4                | 115                     | 79.9           | 122            | 84.5                   |
|                 |             |                  |           | O-W                     | 299                               | 30.4            | 32.9                | 38.3                    | 41.5           | 40.6           | 43.9                   |
|                 |             |                  |           | CO <sub>2</sub> -W      | 91                                | 91.2            | 32.9                | 115                     | 41.5           | 122            | 43.9                   |
|                 |             |                  |           |                         |                                   |                 |                     |                         |                |                |                        |
|                 |             |                  |           |                         |                                   | Equivalent      | Injection Pressures | Oil/Brine               | Oil/Brine      | Height Above   | Height Above           |
|                 | Raw         | v Data           | Conforma  | nce Corrected           | Pore                              | Air/Brine       | Air/Brine           | Lab                     | Reservoir      | Free Water     | Free Water             |
| Pressure        | Intrusion   | Saturation       | Intrusion | Saturation              | Diameter                          | Lab             | Res Con             | Conditions              | Conditions     | Oil-Water      | Gas-Water              |
| (psia)          | (percent)   | (percent)        | (percent) | (percent)               | (µm)                              | (ps1)           | (psi)               | (psi)                   | (psi)          | (reet)         | (reet)                 |
|                 |             |                  |           |                         |                                   |                 |                     |                         |                |                |                        |
| 1.00            | 0.0         | 0.0              | 0.0       | 0.0                     | 211                               | 0.20            | 0.14                | 0.11                    | 0.07           | 0.64           | 0.40                   |
| 1.98            | 0.0         | 0.0              | 0.0       | 0.0                     | 107                               | 0.39            | 0.27                | 0.23                    | 0.14           | 1.28           | 0.79                   |
| 2.73            | 0.0         | 0.0              | 0.0       | 0.0                     | 77.6                              | 0.54            | 0.37                | 0.31                    | 0.19           | 1.75           | 1.09                   |
| 3.18            | 0.0         | 0.0              | 0.0       | 0.0                     | 66.7                              | 0.62            | 0.43                | 0.36                    | 0.23           | 2.05           | 1.27                   |
| 3.73            | 0.0         | 0.0              | 0.0       | 0.0                     | 56.9                              | 0.73            | 0.51                | 0.43                    | 0.26           | 2.40           | 1.49                   |
| 4.38            | 0.0         | 0.0              | 0.0       | 0.0                     | 48.4                              | 0.86            | 0.60                | 0.50                    | 0.31           | 2.82           | 1.76                   |
| 5.18            | 0.0         | 0.0              | 0.0       | 0.0                     | 41.0                              | 1.02            | 0.71                | 0.59                    | 0.37           | 3.34           | 2.08                   |
| 6.97            | 0.0         | 0.0              | 0.0       | 0.0                     | 30.4                              | 1.17            | 0.95                | 0.08                    | 0.42           | 4 49           | 2.59                   |
| 8.27            | 0.0         | 0.0              | 0.0       | 0.0                     | 25.6                              | 1.62            | 1.13                | 0.95                    | 0.59           | 5.33           | 3.32                   |
| 9.97            | 0.0         | 0.0              | 0.0       | 0.0                     | 21.3                              | 1.95            | 1.35                | 1.14                    | 0.71           | 6.42           | 3.97                   |
| 11.5            | 0.0         | 0.0              | 0.0       | 0.0                     | 18.5                              | 2.25            | 1.56                | 1.32                    | 0.82           | 7.43           | 4.59                   |
| 13.5            | 0.0         | 0.0              | 0.0       | 0.0                     | 15.7                              | 2.65            | 1.84                | 1.54                    | 0.95           | 8.66           | 5.41                   |
| 15.5            | 0.0         | 0.0              | 0.0       | 0.0                     | 13.7                              | 3.04            | 2.11                | 1.77                    | 1.10           | 10.0           | 6.21                   |
| 18.5            | 0.0         | 0.0              | 0.0       | 0.0                     | 11.5                              | 3.63            | 2.52                | 2.12                    | 1.31           | 11.9           | 7.41                   |
| 21.6            | 0.0         | 0.0              | 0.0       | 0.0                     | 9.83                              | 4.24            | 2.94                | 2.47                    | 1.53           | 13.9           | 8.65                   |
| 25.5            | 0.0         | 0.0              | 0.0       | 0.0                     | 8.39<br>7.08                      | 4.90            | 5.44<br>4.08        | 2.90                    | 2.12           | 10.4           | 10.1                   |
| 37.2            | 0.0         | 0.0              | 0.0       | 0.0                     | 5 70                              | 7 29            | 5.06                | 4 26                    | 2.12           | 24.0           | 14.9                   |
| 47.2            | 0.2         | 0.3              | 0.0       | 0.0                     | 4.49                              | 9.25            | 6.42                | 5.40                    | 3.34           | 30.4           | 18.9                   |
| 56.6            | 0.3         | 0.5              | 0.0       | 0.0                     | 3.75                              | 11.1            | 7.71                | 6.48                    | 4.01           | 36.5           | 22.7                   |
| 66.3            | 0.4         | 0.9              | 0.0       | 0.0                     | 3.20                              | 13.0            | 9.03                | 7.59                    | 4.70           | 42.7           | 26.6                   |
| 80.4            | 1.0         | 1.9              | 0.0       | 0.0                     | 2.64                              | 15.8            | 11.0                | 9.20                    | 5.70           | 51.8           | 32.4                   |
| 93.0            | 1.0         | 2.9              | 0.0       | 0.0                     | 2.28                              | 18.2            | 12.6                | 10.6                    | 6.56           | 59.6           | 37.1                   |
| 111             | 1.1         | 4.0              | 0.0       | 0.0                     | 1.91                              | 21.8            | 15.1                | 12.7                    | 7.86           | 71.5           | 44.4                   |
| 129             | 1.1         | 5.1              | 0.0       | 0.0                     | 1.65                              | 25.3            | 17.6                | 14.8                    | 9.16           | 83.3           | 51.8                   |
| 132             | 1.2         | 7.5              | 0.0       | 0.0                     | 1.39                              | 29.0            | 20.7                | 20.5                    | 10.8           | 96.2           | 71.8                   |
| 210             | 1.2         | 87               | 0.0       | 0.0                     | 1.10                              | 41.2            | 28.6                | 24.0                    | 14.9           | 135            | 84.1                   |
| 247             | 0.0         | 8.7              | 0.0       | 0.0                     | 0.860                             | 48.4            | 33.6                | 28.3                    | 17.5           | 159            | 98.8                   |
| 292             | 1.1         | 9.8              | 0.0       | 0.0                     | 0.726                             | 57.3            | 39.8                | 33.4                    | 20.7           | 188            | 117                    |
| 343             | 1.5         | 11.3             | 0.0       | 0.0                     | 0.619                             | 67.3            | 46.7                | 39.3                    | 24.3           | 221            | 137                    |
| 401             | 1.6         | 12.9             | 1.8       | 1.8                     | 0.528                             | 78.6            | 54.6                | 45.9                    | 28.4           | 258            | 161                    |
| 472             | 2.2         | 15.1             | 2.5       | 4.3                     | 0.449                             | 92.5            | 64.2                | 54.0                    | 33.4           | 304            | 189                    |
| 553             | 3.2         | 18.3             | 3.6       | 8.0                     | 0.383                             | 108             | 75.0                | 63.3                    | 39.2           | 356            | 221                    |
| 757             | 24.8        | 20.7             | 27.9      | 45.3                    | 0.528                             | 127             | 103                 | 74.0<br>86.6            | 43.8           | 410            | 303                    |
| 887             | 24.0        | 76.3             | 28.0      | 73.3                    | 0.239                             | 174             | 121                 | 102                     | 63.1           | 574            | 356                    |
| 1048            | 20.9        | 97.2             | 23.5      | 96.8                    | 0.202                             | 205             | 142                 | 120                     | 74.3           | 675            | 418                    |
| 1227            | 1.4         | 98.6             | 1.6       | 98.5                    | 0.173                             | 241             | 167                 | 140                     | 86.7           | 788            | 491                    |
| 1439            | 0.0         | 98.6             | 0.0       | 98.5                    | 0.147                             | 282             | 196                 | 165                     | 102            | 927            | 576                    |
| 1688            | 0.1         | 98.8             | 0.1       | 98.6                    | 0.126                             | 331             | 230                 | 193                     | 119            | 1082           | 676                    |
| 1828            | 0.2         | 98.9             | 0.2       | 98.8                    | 0.116                             | 358             | 249                 | 209                     | 129            | 1173           | 732                    |
| 2142            | 0.1         | 99.1             | 0.2       | 99.0                    | 0.0990                            | 420             | 292                 | 245                     | 152            | 1382           | 859                    |
| 2945            | 0.1         | 99.2             | 0.1       | 99.1                    | 0.0345                            | 577             | 401                 | 337                     | 209            | 1900           | 1179                   |
| 3449            | 0.2         | 99.4             | 0.2       | 99.3                    | 0.0615                            | 676             | 469                 | 395                     | 245            | 2227           | 1379                   |
| 4040            | 0.1         | 99.5             | 0.1       | 99.4                    | 0.0525                            | 792             | 550                 | 462                     | 286            | 2600           | 1618                   |
| 4728            | 0.1         | 99.6             | 0.1       | 99.5                    | 0.0448                            | 927             | 644                 | 541                     | 335            | 3045           | 1894                   |
| 5114            | 0.1         | 99.6             | 0.1       | 99.6                    | 0.0415                            | 1003            | 697                 | 585                     | 362            | 3291           | 2050                   |
| 6002            | 0.1         | 99.8             | 0.1       | 99.7                    | 0.0353                            | 1177            | 817                 | 687                     | 425            | 3864           | 2403                   |
| 7033            | 0.0         | 99.8             | 0.1       | 99.8                    | 0.0301                            | 1379            | 958                 | 805                     | 498            | 4527           | 2818                   |
| 8920            | 0.0         | 99.8             | 0.0       | 99.8                    | 0.0209                            | 1348            | 1075                | 1021                    | 632            | 5745           | 3102                   |
| 9649            | 0.1         | 100.0            | 0.1       | 100.0                   | 0.0238                            | 1892            | 1314                | 1104                    | 683            | 6209           | 3865                   |
| 10452           | 0.0         | 100.0            | 0.0       | 100.0                   | 0.0203                            | 2049            | 1423                | 1196                    | 740            | 6727           | 4185                   |
| 12283           | 0.0         | 100.0            | 0.0       | 100.0                   | 0.0173                            | 2408            | 1672                | 1406                    | 870            | 7909           | 4918                   |
| 14333           | 0.0         | 100.0            | 0.0       | 100.0                   | 0.0148                            | 2810            | 1951                | 1640                    | 1015           | 9227           | 5738                   |
| 16381           | 0.0         | 100.0            | 0.0       | 100.0                   | 0.0129                            | 3212            | 2231                | 1875                    | 1161           | 10555          | 6562                   |
| 18481           | 0.0         | 100.0            | 0.0       | 100.0                   | 0.0115                            | 3624            | 2517                | 2115                    | 1309           | 11900          | 7403                   |
| 20481           | 0.0         | 100.0            | 0.0       | 100.0                   | 0.0104                            | 4016            | 2789                | 2344                    | 1451           | 13191          | 8203                   |
| 25149           | 0.0         | 100.0            | 0.0       | 100.0                   | 0.0092                            | 4539            | 3132                | 2049                    | 1040           | 14909          | 9271                   |
| 23004           | 0.0         | 100.0            | 0.0       | 100.0                   | 0.0085                            | 4713            | 3695                | 2008                    | 1022           | 17473          | 10058                  |
| 29376           | 0.0         | 100.0            | 0.0       | 100.0                   | 0.0072                            | 5760            | 4000                | 3362                    | 2081           | 18918          | 11765                  |
| 31804           | 0.0         | 100.0            | 0.0       | 100.0                   | 0.0067                            | 6236            | 4331                | 3640                    | 2253           | 20482          | 12738                  |
| 34421           | 0.0         | 100.0            | 0.0       | 100.0                   | 0.0062                            | 6749            | 4687                | 3939                    | 2438           | 22164          | 13785                  |
| 37192           | 0.0         | 100.0            | 0.0       | 100.0                   | 0.0057                            | 7293            | 5065                | 4256                    | 2635           | 23955          | 14897                  |
| 40343           | 0.0         | 100.0            | 0.0       | 100.0                   | 0.0053                            | 7910            | 5493                | 4617                    | 2858           | 25982          | 16156                  |
| 43591           | 0.0         | 100.0            | 0.0       | 100.0                   | 0.0049                            | 8547            | 5935                | 4989                    | 3088           | 28073          | 17456                  |
| 47291           | 0.0         | 100.0            | 0.0       | 100.0                   | 0.0045                            | 9273            | 6440                | 5412                    | 3350           | 30455          | 18941                  |
| 511/2           | 0.0         | 100.0            | 0.0       | 100.0                   | 0.0041                            | 10034           | 0908<br>7542        | 2820                    | 3023           | 32933<br>35672 | 20494                  |
| 59880           | 0.0         | 100.0            | 0.0       | 100.0                   | 0.0035                            | 11741           | 8153                | 6853                    | 4242           | 38564          | 23979                  |
|                 |             |                  |           |                         |                                   |                 |                     | · · · · •               | .=             |                | 1.1.1.2                |



(B) Capillary Pressure Plot



(C) Pore Size Distribution plot

| Orac         Concernes         Verter is produce         Concernes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Well<br>Sample                 | Depth       |                    |            | Seacomb<br>947.60 n          | e-7<br>n             |                  |                      |                   |                         |                         |                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------|--------------------|------------|------------------------------|----------------------|------------------|----------------------|-------------------|-------------------------|-------------------------|-------------------------|
| Math         Jigual         Jigual </th <th>Client</th> <th>Geoscience</th> <th>Victoria</th> <th></th> <th>Density C</th> <th>Fradients (psi/foot)</th> <th></th> <th>Conv</th> <th>ersion Paramet</th> <th>ers (dynes/cm)</th> <th>)</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Client                         | Geoscience  | Victoria           |            | Density C                    | Fradients (psi/foot) |                  | Conv                 | ersion Paramet    | ers (dynes/cm)          | )                       |                         |
| Ta Mada AbAbesy Cynling Paswer Parker 1997 97.0 340 49.0 193<br>Sorge 17.0 200 199 199 199 199 199 199 199 199 199 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Well                           | Seacombe-7  |                    |            | Watan                        | Typical              | I ab and any The |                      | air/water         | air/oil                 | oil/water               | CO <sub>2</sub> /water  |
| Image         Unit         Unit         Unit         Description         0000<br>200         200<br>200         200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Test Method                    | Air/Mercury | Capillary Press    | ure        | Oil:                         | 0.330                | Laboratory IFT   | la.                  | 72.0              | 24.0                    | 48.0                    | 72.0                    |
| <ul> <li>Martie Provensities</li> <li>Attice Provensities&lt;</li></ul>                                                                                                                                                                                                                     |                                |             |                    |            | Gas:                         | 0.100                | Reservoir Theta  | ı                    | 0.0               |                         | 30.0                    | 0.0                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample<br>Denth                | 947 60 m    |                    |            | CO <sub>2</sub> Density      | 0.246                | Reservoir IFT    | sTheta               | 50.0<br>72.0      | 24.0                    | 30.0<br>42.0            | 26.0                    |
| Atheno Provestigner         Output         Temperature junt         Tempe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Depth                          | 947.00 m    |                    |            | e og Bensky                  | 0.240                | Reservoir Tcos   | Theta                | 50.0              | 24.0                    | 26.0                    | 26.0                    |
| Ambed Property and Pr | Ambient Pern                   | neability   |                    |            |                              | Estimated Column     | Entry P          | ressure (psia)       | Displacement F    | Pressure (psia)         | Threshold P             | ressure (psia)          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ambient Poro<br>pore radius (u | sity<br>m)  | 0.034              |            | A-Hg                         | na                   | Lab<br>3091      | Res Con              | Lab<br>3284       | Resv                    | Lab<br>3520             | Resv                    |
| Und         190         200         210         211         213         210         214         230         216           Pessen<br>(max)         Implies<br>(max)         Concent<br>(max)         Concent<br>(max)         Pessen<br>(max)         Concent<br>(max)         Concent<br>(max) <t< th=""><th>F</th><th>)</th><th></th><th></th><th>G-W</th><th>1238</th><th>606</th><th>421</th><th>644</th><th>447</th><th>691</th><th>480</th></t<>                                                                                                                                                                                                                                                                                                                        | F                              | )           |                    |            | G-W                          | 1238                 | 606              | 421                  | 644               | 447                     | 691                     | 480                     |
| L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L <thl< th="">         L         <thl< th=""> <thl< th=""></thl<></thl<></thl<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |             |                    |            | O-W<br>COs-W                 | 1991<br>671          | 202              | 219                  | 215               | 233                     | 230                     | 249                     |
| Jac Juli         Calibative Control         Person         Description         Injustational Control         Description         Injustational Control         Oillibre         Description         Control         Description         Descriptio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |             |                    |            |                              |                      |                  |                      |                   |                         |                         |                         |
| present         List Jik.         Control (preced)         Present         Antities         Antities         Antities         Control (preced)         Present         Present           101         000         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |             |                    |            |                              |                      | Equivalent       | Injection Pressures  | Oil/Brine         | Oil/Brine               | Height Above            | Height Above            |
| (prov)         (prov)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pressure                       | Intrusion   | Data<br>Saturation | Intrusion  | ance Corrected<br>Saturation | Pore<br>Diameter     | Air/Brine<br>Lab | Air/Brine<br>Res Con | Lab<br>Conditions | Reservoir<br>Conditions | Free Water<br>Oil-Water | Free Water<br>Gas-Water |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (psia)                         | (percent)   | (percent)          | (percent)  | (percent)                    | (μm)                 | (psi)            | (psi)                | (psi)             | (psi)                   | (feet)                  | (feet)                  |
| 1         0.0         0.0         0.0         211         C.2         0.14         0.12         0.05         0.45           1.94         0.0         0.0         0.0         7.7         0.45         0.37         0.31         0.19         1.75         1.07           1.35         0.0         0.0         0.0         64.7         0.45         0.31         0.01         0.25         2.32         1.15           1.35         0.0         0.0         0.0         0.44         0.66         0.64         0.50         0.31         2.32         1.15           3.18         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |             |                    |            |                              |                      |                  |                      |                   |                         |                         |                         |
| 1         8         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.01                           | 0.0         | 0.0                | 0.0        | 0.0                          | 211                  | 0.20             | 0.14                 | 0.12              | 0.07                    | 0.65                    | 0.41                    |
| 123         0.0         0.0         0.0         777         0.54         0.37         0.01         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.98                           | 0.0         | 0.0                | 0.0        | 0.0                          | 107                  | 0.39             | 0.27                 | 0.23              | 0.14                    | 1.28                    | 0.79                    |
| 1.97         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 <td>2.73</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>77.7</td> <td>0.54</td> <td>0.37</td> <td>0.31</td> <td>0.19</td> <td>1.75</td> <td>1.09</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.73                           | 0.0         | 0.0                | 0.0        | 0.0                          | 77.7                 | 0.54             | 0.37                 | 0.31              | 0.19                    | 1.75                    | 1.09                    |
| 4.8.8         0.0         0.0         0.0         0.0         4.4.4         0.86         0.60         0.59         0.31         2.22         1.76           5.18         0.0         0.0         0.0         0.0         0.0         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.18                           | 0.0         | 0.0                | 0.0        | 0.0                          | 56.9                 | 0.02             | 0.43                 | 0.30              | 0.23                    | 2.03                    | 1.27                    |
| 5.18         0.0         0.0         0.0         4.10         1.02         0.71         0.57         0.37         1.34         2.08           5.97         0.0         0.0         0.0         0.25         1.12         0.13         0.06         0.40         0.33         3.32           9.97         0.0         0.0         0.0         0.0         1.55         1.55         1.14         0.71         6.42         3.32           1.15         0.0         0.0         0.0         0.0         1.55         1.55         1.35         0.82         7.44         4.59           1.15         0.0         0.0         0.0         0.0         1.15         3.43         2.22         1.14         1.13         1.19         8.44           1.15         0.0         0.0         0.0         9.33         4.44         2.94         1.41         1.10         1.13         1.13         1.13         1.14         1.14         1.15         1.13         1.13         1.14         1.14         1.14         1.15         1.14         1.15         1.14         1.15         1.14         1.15         1.14         1.15         1.14         1.15         1.15         1.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.38                           | 0.0         | 0.0                | 0.0        | 0.0                          | 48.4                 | 0.86             | 0.60                 | 0.50              | 0.31                    | 2.82                    | 1.76                    |
| 6.97         0.0         0.0         0.0         204         1.17         0.05         0.00         0.00         4.60         2.33           9.77         0.0         0.0         0.0         0.0         21.3         1.95         1.13         0.14         0.71         6.4         3.32           9.77         0.0         0.0         0.0         0.0         1.57         2.34         1.54         1.03         1.14         1.04         6.74         1.45           1.15         0.0         0.0         0.0         1.57         2.34         2.24         2.47         1.53         1.19         7.41           1.15         0.0         0.0         0.0         0.0         8.39         4.64         2.47         1.53         1.39         8.65           2.53         0.0         0.0         0.0         0.0         3.71         1.12         7.78         6.53         3.32         4.64         3.67         2.29           6.62         0.0         0.0         0.0         3.71         1.12         7.78         6.54         3.32         5.46         9.46         3.64         3.64         3.64         3.64         3.64         3.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.18                           | 0.0         | 0.0                | 0.0        | 0.0                          | 41.0                 | 1.02             | 0.71                 | 0.59              | 0.37                    | 3.34                    | 2.08                    |
| 8.27         0.0         0.0         0.0         256         1.62         1.13         0.95         3.3         3.3         3.3           9.97         0.0         0.0         0.0         0.0         185         2.23         1.56         1.32         0.08         7.4         4.59           135         0.0         0.0         0.0         1.57         2.6         1.84         1.54         0.08         7.6         4.54           135         0.0         0.0         0.0         9.83         2.44         2.44         2.47         1.53         1.19         7.84           216         0.0         0.0         0.0         9.83         4.46         3.44         2.40         2.13         1.19         7.84           210         0.0         0.0         0.0         7.38         4.08         3.44         2.44         2.44         2.44         1.64         8.63         4.64         3.64         3.64         4.64         8.63         4.64         3.65         3.64         4.64         3.65         3.64         3.65         3.64         3.65         3.64         3.65         3.64         3.64         3.65         3.64         3.65         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.97                           | 0.0         | 0.0                | 0.0        | 0.0                          | 30.4                 | 1.17             | 0.95                 | 0.80              | 0.42                    | 4.49                    | 2.80                    |
| 9.97         0.0         0.0         0.0         12.3         1.95         1.14         0.15         1.42         0.87         7.46         4.29         3.47           115         0.0         0.0         0.0         0.0         1.37         2.36         2.11         1.37         1.14         0.87         7.46         4.24           125         0.0         0.0         0.0         0.0         1.37         2.36         2.212         1.31         1.19         7.47           126         0.0         0.0         0.0         9.33         4.44         2.94         2.47         1.53         1.53         1.54         1.13         1.54         1.53         1.54         1.54         1.54         1.55         1.54         1.00         1.54         1.55         1.54         1.54         1.55         1.54         1.55         1.54         1.55         1.54         1.55         1.54         1.55         1.55         1.54         1.55         1.54         1.55         1.55         1.56         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.55         1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.27                           | 0.0         | 0.0                | 0.0        | 0.0                          | 25.6                 | 1.62             | 1.13                 | 0.95              | 0.59                    | 5.33                    | 3.32                    |
| 113         00         00         00         137         243         134         124         0.09         5.60         5.60         5.60         6.60         6.61           155         00         00         00         00         115         3.63         252         2.12         1.31         11.9         7.41           216         00         00         00         9.33         4.44         2.44         1.44         1.64         1.61           305         00         0.0         0.0         0.0         8.59         4.48         3.44         2.30         1.30         1.64         1.61           305         0.0         0.0         0.0         0.0         4.53         9.18         6.33         4.40         3.42         9.22         1.53           46.2         0.0         0.0         0.0         0.0         3.30         13.0         9.33         7.75         5.65         3.12         9.22         1.54         12.0         1.04         6.44         2.5         2.56         3.15         3.15         1.15         1.15         1.15         3.15         1.15         3.15         1.15         1.15         1.15         1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.97                           | 0.0         | 0.0                | 0.0        | 0.0                          | 21.3                 | 1.95             | 1.35                 | 1.14              | 0.71                    | 6.42                    | 3.97                    |
| 155         0.0         0.0         0.0         13.7         3.04         2.11         1.77         1.10         10.0         6.21           18.5         0.0         0.0         0.0         9.33         4.24         2.24         2.27         1.53         10.9         8.64           21.3         0.0         0.0         0.0         7.68         7.55         5.10         2.20         1.81         1.41         1.10         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         0.01         0.01         0.01         0.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.5                           | 0.0         | 0.0                | 0.0        | 0.0                          | 18.5                 | 2.25             | 1.84                 | 1.52              | 0.82                    | 8.66                    | 4.39<br>5.41            |
| 18.5         0.0         0.0         0.0         1.15         3.63         2.52         2.17         1.31         1.19         7.41           21.6         0.0         0.0         0.0         0.0         0.0         1.03         1.19         7.48           32.0         0.0         0.0         0.0         0.0         7.58         5.58         4.46         3.12         1.03         1.12           7.5         0.0         0.0         0.0         4.53         9.18         6.53         4.04         3.52         2.65           6.2         0.0         0.0         0.0         0.0         3.30         1.13         9.03         7.75         4.04         3.55           102         0.0         0.0         0.0         0.0         1.33         1.14         1.04         1.04         3.64         3.55           102         0.0         0.0         0.0         1.44         2.55         1.16         1.14         8.92         60.9           112         0.1         0.2         0.0         0.0         1.14         2.55         1.16         1.16         1.16         1.16         1.17           133         1.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.5                           | 0.0         | 0.0                | 0.0        | 0.0                          | 13.7                 | 3.04             | 2.11                 | 1.77              | 1.10                    | 10.0                    | 6.21                    |
| 12.3         0.0         0.0         0.0         8.39         4.66         5.44         2.30         1.60         1.64         1.00           30.0         0.0         0.0         0.0         0.0         2.12         1.93         1.20           37.5         0.0         0.0         0.0         0.0         5.66         7.35         5.10         4.29         2.66         2.42         1.50           64.2         0.0         0.0         0.0         3.31         1.12         7.78         6.53         4.44         3.67         2.23           64.2         0.0         0.0         0.0         0.33         1.14         1.01         1.44         3.64         3.46         4.64         2.64         2.64           7.0         7.00         0.0         0.0         1.33         2.16         1.16         1.64         3.65         3.18         3.18         3.18         3.16         1.16         8.53         3.18         1.16         1.53         1.45         3.14         9.16         8.3.3         3.18         1.16         1.53         1.45         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18.5                           | 0.0         | 0.0                | 0.0        | 0.0                          | 11.5                 | 3.63             | 2.52                 | 2.12              | 1.31                    | 11.9                    | 7.41                    |
| 300         0.0         0.0         0.0         7.68         5.88         4.08         0.423         2.26         2.24         1.50           46.8         0.0         0.0         0.0         4.33         9.18         6.33         5.35         3.32         3.02         18.83           57.1         0.0         0.0         0.0         3.30         13.4         9.03         7.53         4.69         4.26         2.26         2.45         15.3           91.0         0.0         0.0         0.0         2.33         17.9         1.16         1.44         2.53         17.6         1.48         9.16         8.3         1.51           120         0.1         0.0         0.0         1.44         2.53         17.6         1.48         9.16         8.3         1.51           1210         0.1         0.0         0.0         1.44         2.53         17.5         1.60         9.41         1.61         9.23         1.50         1.28         1.16         7.14         1.08         9.24         1.60         9.41           1212         0.1         0.3         0.0         0.0         1.00         1.00         1.00         1.00         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21.0                           | 0.0         | 0.0                | 0.0        | 0.0                          | 8.39                 | 4.24             | 3.44                 | 2.47              | 1.55                    | 16.4                    | 10.1                    |
| 375       0.0       0.0       0.0       0.0       0.0       3.11       1.13       7.38       5.10       4.29       2.66       3.22       1.85         57.1       0.0       0.0       0.0       0.0       3.71       1.13       7.78       6.53       4.44       3.67       2.29       6.55       4.64       3.67       2.29       6.55       4.64       3.67       2.29       6.55       4.64       3.67       2.29       6.55       4.64       3.67       2.29       6.55       4.64       3.65       3.55       1.6       1.64       2.55       3.55       6.55       3.65       1.64       1.64       2.53       1.76       1.44       9.16       8.3.3       5.18       1.65       8.50       1.88       5.18       1.66       7.21       1.22       0.1       0.0       0.0       0.0       1.44       2.53       2.64       1.76       1.68       8.50       1.88       2.43       1.76       1.68       8.50       1.68       8.50       1.68       8.50       1.68       8.50       1.68       8.50       1.68       8.51       1.61       1.75       3.33       2.54       1.76       1.61       8.55       1.61       8.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30.0                           | 0.0         | 0.0                | 0.0        | 0.0                          | 7.08                 | 5.88             | 4.08                 | 3.43              | 2.12                    | 19.3                    | 12.0                    |
| s71         00         00         00         00         112         078         6.53         4.44         36.7         129           66.2         00         0.0         0.0         0.0         0.0         2.70         15.4         10.7         9.00         5.57         50.6         31.5           91.2         0.0         0.0         0.0         0.0         1.33         21.6         15.0         12.4         10.4         6.44         8.55         35.5           110         0.0         0.0         1.44         25.3         17.6         14.8         9.16         8.33         51.8           132         0.1         0.2         0.0         0.0         1.44         25.3         17.6         14.8         9.16         8.33         51.8           132         0.1         0.4         0.0         0.0         1.44         25.3         17.6         33.3         20.6         10.7         16.7         17.4         10.8         9.82         20.7         13.3         20.6         10.7         16.7         17.7         3.3         20.6         10.7         17.7         13.4         20.4         22.9         18.4         11.7         11.7 </td <td>37.5</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>5.66</td> <td>7.35</td> <td>5.10</td> <td>4.29</td> <td>2.66</td> <td>24.2</td> <td>15.0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37.5                           | 0.0         | 0.0                | 0.0        | 0.0                          | 5.66                 | 7.35             | 5.10                 | 4.29              | 2.66                    | 24.2                    | 15.0                    |
| 66.2         0.0         0.0         0.0         0.2         0.1         1.10         9.0         7.58         4.69         4.2.6         3.5.5           91.2         0.0         0.0         0.0         0.0         2.33         1.16         1.5.0         1.2.6         1.5.0         1.2.6         1.5.0         1.2.6         1.5.0         1.2.6         1.5.0         1.2.6         1.5.0         1.2.6         1.5.0         1.2.6         1.5.0         1.2.6         1.5.0         1.2.6         1.5.0         1.2.6         1.5.0         1.2.6         1.5.0         1.2.6         1.5.0         1.2.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0         1.0.0 </td <td>57.1</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>3.71</td> <td>11.2</td> <td>7.78</td> <td>6.53</td> <td>4.04</td> <td>36.7</td> <td>22.9</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 57.1                           | 0.0         | 0.0                | 0.0        | 0.0                          | 3.71                 | 11.2             | 7.78                 | 6.53              | 4.04                    | 36.7                    | 22.9                    |
| 78.6         0.0         0.0         0.0         0.0         0.2         17.9         12.4         10.4         6.44         88.5         3.6.5           110         0.0         0.1         0.0         0.0         1.93         21.6         15.6         14.4         81.6         88.3         3.6.3           112         0.1         0.3         0.0         0.0         1.140         23.8         17.6         14.4         81.6         83.3         3.1.8           112         0.1         0.3         0.0         0.0         1.140         23.8         20.6         12.8         91.6         6.9           212         0.1         0.4         0.0         0.0         0.544         48.6         33.8         28.4         17.6         160         99.4           221         0.1         0.5         0.1         0.1         0.617         67.5         46.9         39.4         24.4         222         18.8           402         0.1         0.7         0.3         0.447         92.9         64.5         54.2         33.6         30.5         123.5           442         0.1         0.4         0.3         0.447         92.9 <td>66.2</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>3.20</td> <td>13.0</td> <td>9.03</td> <td>7.58</td> <td>4.69</td> <td>42.6</td> <td>26.6</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 66.2                           | 0.0         | 0.0                | 0.0        | 0.0                          | 3.20                 | 13.0             | 9.03                 | 7.58              | 4.69                    | 42.6                    | 26.6                    |
| 10         00         00         1-33         116         150         128         930         780         741           129         0.1         0.2         0.0         0.0         1.40         298         20.7         174         10.8         98.2         60.9           180         0.1         0.3         0.0         0.0         1.40         29.8         20.7         174         10.8         98.2         60.9           212         0.1         0.4         0.0         0.0         4.46         28.9         24.3         15.0         13.6         85.0           218         0.1         0.5         0.1         0.1         0.729         77.1         39.7         33.3         20.6         187         117           344         0.1         0.5         0.1         0.1         0.647         29.9         64.3         54.2         33.6         30.5         190         35.5         0.1         0.8         0.1         0.4         0.322         197         78.0         3.5         33.3         37.7         22.9         74.1         55.9         40.0         303         38.8         1.1         1.0         0.4         0.32.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 78.6                           | 0.0         | 0.0                | 0.0        | 0.0                          | 2.70                 | 15.4             | 10.7                 | 9.00              | 5.57                    | 50.6                    | 31.5                    |
| 129         0.1         0.0         0.0         1.64         253         1.76         1.48         9.16         83.3         51.8           152         0.1         0.3         0.0         0.0         1.17         35.3         24.5         20.6         12.8         11.6         72.1           212         0.1         0.5         0.1         0.0         0.854         48.6         33.8         28.4         17.6         16.0         19.7           344         0.1         0.5         0.1         0.1         0.617         77.5         46.9         39.4         24.4         22.2         138           402         0.1         0.5         0.1         0.3         0.477         72.9         64.5         54.2         33.6         355         190           555         0.1         0.8         0.1         0.4         0.322         11.9         81.2         1.5         33.3         357         229           643         0.1         0.4         0.477         14.8         13.4         10.0         71.4         45.9         401         259           644         0.1         0.1         0.6         0.279         14.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 110                            | 0.0         | 0.0                | 0.0        | 0.0                          | 1.93                 | 21.6             | 15.0                 | 12.6              | 7.80                    | 70.9                    | 44.1                    |
| 152       0.1       0.2       0.0       0.0       1.40       29.83       20.7       17.4       10.8       98.2       60.9         180       0.1       0.3       0.0       0.0       1.00       41.6       23.9       24.3       15.0       13.6       85.0         248       0.1       0.4       0.0       0.0854       44.6       23.3       22.44       17.6       160       97.4         241       0.1       0.5       0.1       0.1       0.627       73.8       54.7       46.0       22.5       25.9       161         442       0.1       0.6       0.1       0.2       0.527       78.8       54.7       46.0       22.5       25.9       161         55       0.1       0.8       0.1       0.4       0.327       197       85.2       47.5       45.9       490       90.9       33.3       37.7       22.9         648       0.1       0.1       0.4       0.202       1.4       16.7       141       87.3       784       491         128       0.2       1.5       0.2       1.4       0.173       241       167       141       87.3       794       491 </td <td>129</td> <td>0.1</td> <td>0.1</td> <td>0.0</td> <td>0.0</td> <td>1.64</td> <td>25.3</td> <td>17.6</td> <td>14.8</td> <td>9.16</td> <td>83.3</td> <td>51.8</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 129                            | 0.1         | 0.1                | 0.0        | 0.0                          | 1.64                 | 25.3             | 17.6                 | 14.8              | 9.16                    | 83.3                    | 51.8                    |
| 121         0.0         0.0         1.00         1.46         229         2.43         1.50         1.85         85.0           248         0.1         0.5         0.1         0.1         0.729         57.1         337         33.3         2.06         187         117           344         0.1         0.5         0.1         0.1         0.6         77.5         46.9         39.4         2.44         222         13           402         0.1         0.6         0.1         0.2         0.527         78.8         54.7         46.0         2.85         2.36         305         161           474         0.1         0.7         0.1         0.3         0.44         0.322         17.8         54.4         1.42         54.2         3.36         305         190           555         0.1         0.8         0.1         0.6         0.279         149         103         87.1         53.9         33.3         357         223           648         0.1         1.0         0.1         0.6         0.279         149         103         17.3         474         421           1228         0.1         0.1         0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 152                            | 0.1         | 0.2                | 0.0        | 0.0                          | 1.40                 | 29.8             | 20.7                 | 17.4              | 10.8                    | 98.2                    | 60.9<br>72.1            |
| 248         0.1         0.4         0.0         0.84         446         338         284         176         100         99.4           291         0.1         0.5         0.1         0.1         0.617         67.5         469         39.4         24.4         222         138           442         0.1         0.6         0.1         0.2         0.527         78.8         54.7         46.0         28.5         259         161           444         0.1         0.7         0.1         0.3         0.447         92.9         64.5         54.2         33.6         305         1990           555         0.1         0.8         0.1         0.4         0.3327         127         88.2         74.2         45.9         417         259           761         0.1         1.0         0.1         0.7         0.292         206         143         102         7.3         675         421           128         0.2         1.4         0.173         241         167         141         87.3         794         491           1489         0.2         2.2         0.2         1.8         0.16         358         249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 212                            | 0.1         | 0.3                | 0.0        | 0.0                          | 1.00                 | 41.6             | 24.5                 | 24.3              | 15.0                    | 136                     | 85.0                    |
| 291         0.1         0.5         0.1         0.1         0.729         57.1         39.7         33.3         20.6         187         117           344         0.1         0.6         0.1         0.2         0.527         78.8         54.7         46.0         28.5         259         161           474         0.1         0.7         0.1         0.3         0.477         97.7         65.5         39.3         357         223           648         0.1         0.9         0.1         0.6         0.372         129         78.2         74.2         45.9         417         229           761         0.1         1.0         0.1         0.6         0.279         149         103         87.1         53.9         490         303           888         0.1         1.1         0.1         0.6         0.22         206         143         120         74.3         675         421           1228         0.2         1.8         0.147         282         196         165         102         92         757         57           1428         0.2         0.2         0.1         1.0         137         230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 248                            | 0.1         | 0.4                | 0.0        | 0.0                          | 0.854                | 48.6             | 33.8                 | 28.4              | 17.6                    | 160                     | 99.4                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 291<br>344                     | 0.1         | 0.5                | 0.1        | 0.1                          | 0.729                | 57.1<br>67.5     | 39.7                 | 33.3<br>39.4      | 20.6<br>24.4            | 187                     | 117                     |
| 474       0.1       0.7       0.1       0.3       0.447       92.9       64.5       54.2       33.6       305       190         555       0.1       0.8       0.1       0.5       0.327       127       88.2       74.2       45.9       41.7       229         648       0.1       1.0       0.1       0.6       0.27       127       88.2       74.2       45.9       44.9       303         888       0.1       1.1       0.1       0.7       0.239       174       121       102       63.1       574       436         1049       0.2       1.5       0.2       1.1       0.173       241       167       141       87.3       794       491         1439       0.2       1.5       0.2       1.4       0.173       241       167       141       87.3       794       491         1439       0.2       1.4       0.17       126       331       230       193       119       1082       676         1828       0.2       0.2       0.3       1.7       0.126       331       337       209       1090       1179         2444       1.4       3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 402                            | 0.1         | 0.6                | 0.1        | 0.2                          | 0.527                | 78.8             | 54.7                 | 46.0              | 28.5                    | 259                     | 161                     |
| 5530.10.80.10.40.82109 $(5.7)$ 63.399.33571236480.11.00.10.60.27914910387.153.944033610490.21.30.20.90.20220614312074.367542112280.21.50.21.10.17324116714187.379449114390.21.80.21.40.14728219616510292757616870.32.00.31.70.126331230193119108267618280.22.20.21.80.116358249209129117373221420.42.70.42.30.0990420292245152188285925080.63.20.62.90.08454423423471618100629441.14.31.14.00.07205774013372091900117934482.87.12.86.80.06156.764693952452227137940452.3.130.22.5.75.5.70.044410046975863633000205040449.170.89.270.70.0331.77187676425336 <td< td=""><td>474</td><td>0.1</td><td>0.7</td><td>0.1</td><td>0.3</td><td>0.447</td><td>92.9</td><td>64.5</td><td>54.2</td><td>33.6</td><td>305</td><td>190</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 474                            | 0.1         | 0.7                | 0.1        | 0.3                          | 0.447                | 92.9             | 64.5                 | 54.2              | 33.6                    | 305                     | 190                     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 555<br>648                     | 0.1         | 0.8                | 0.1        | 0.4                          | 0.382                | 109              | 75.7<br>88.2         | 63.5<br>74.2      | 39.3<br>45.9            | 357<br>417              | 223                     |
| 888       0.1       1.1       0.1       0.7       0.239       174       121       102       63.1       574       356         1049       0.2       1.3       0.2       0.4       0.173       241       167       141       87.3       794       491         1439       0.2       1.8       0.2       1.4       0.147       282       196       165       102       927       576         1687       0.3       2.0       0.3       1.7       0.126       331       230       193       119       1082       676         1888       0.2       2.2       0.2       1.8       0.116       358       249       209       129       1173       752         2142       0.4       2.7       0.4       2.3       00990       420       242       287       178       1618       1006         2244       1.1       1.3       1.1       4.0       0.0720       577       401       337       209       100       1179         3448       2.8       7.1       2.8       6.8       0.64       542       336       3055       1894         512       5.5       0.0524<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 761                            | 0.1         | 1.0                | 0.1        | 0.6                          | 0.279                | 149              | 103                  | 87.1              | 53.9                    | 490                     | 303                     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 888                            | 0.1         | 1.1                | 0.1        | 0.7                          | 0.239                | 174              | 121                  | 102               | 63.1                    | 574                     | 356                     |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1228                           | 0.2         | 1.5                | 0.2        | 1.1                          | 0.173                | 200              | 143                  | 120               | 87.3                    | 794                     | 421                     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1439                           | 0.2         | 1.8                | 0.2        | 1.4                          | 0.147                | 282              | 196                  | 165               | 102                     | 927                     | 576                     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1687                           | 0.3         | 2.0                | 0.3        | 1.7                          | 0.126                | 331              | 230                  | 193               | 119                     | 1082                    | 676<br>722              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2142                           | 0.2         | 2.2                | 0.2        | 2.3                          | 0.0990               | 420              | 249 292              | 209               | 129                     | 1382                    | 859                     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2508                           | 0.6         | 3.2                | 0.6        | 2.9                          | 0.0845               | 492              | 342                  | 287               | 178                     | 1618                    | 1006                    |
| 4045 $23.1$ $30.2$ $23.2$ $29.9$ $0.0524$ $793$ $551$ $463$ $287$ $2609$ $1621$ $4734$ $25.6$ $55.8$ $25.7$ $55.7$ $0.0448$ $928$ $644$ $542$ $336$ $3055$ $1894$ $5122$ $5.9$ $61.7$ $75.86$ $3300$ $2055$ $1894$ $6004$ $9.1$ $70.8$ $9.2$ $70.7$ $0.0353$ $1177$ $817$ $687$ $425$ $3864$ $2403$ $7033$ $6.7$ $77.5$ $6.7$ $77.4$ $0.0301$ $1379$ $958$ $805$ $498$ $4527$ $2818$ $7897$ $3.9$ $81.4$ $4.0$ $84.7$ $0.0237$ $1750$ $1215$ $1022$ $633$ $5755$ $3574$ $9662$ $2.0$ $86.5$ $1.7$ $88.5$ $0.0233$ $2052$ $1425$ $1198$ $742$ $6745$ $4191$ $10465$ $1.7$ $88.5$ $1.7$ $0.0172$ $2411$ $1674$ $407$ $871$ $7918$ $4924$ $14346$ $2.6$ $94.3$ $0.0148$ $2813$ $1953$ $1642$ $1016$ $9236$ $5744$ $16397$ $2.1$ $96.4$ $2.1$ $96.4$ $0.0129$ $3215$ $2233$ $1876$ $1161$ $10555$ $6568$ $18446$ $1.6$ $98.0$ $1.6$ $98.6$ $0.0015$ $3627$ $2519$ $2117$ $1311$ $11918$ $7499$ $20495$ $0.6$ $99.5$ $0.0092$ $4540$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2944<br>3448                   | 1.1         | 4.3                | 1.1        | 4.0                          | 0.0720               | 577              | 401                  | 337               | 209                     | 1900<br>2227            | 1179                    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4045                           | 23.1        | 30.2               | 23.2       | 29.9                         | 0.0524               | 793              | 551                  | 463               | 287                     | 2609                    | 1621                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4734                           | 25.6        | 55.8               | 25.7       | 55.7                         | 0.0448               | 928              | 644                  | 542               | 336                     | 3055                    | 1894                    |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6004                           | 5.9<br>9.1  | 70.8               | 5.9<br>9.2 | 61.5<br>70.7                 | 0.0414               | 1004             | 817                  | 586<br>687        | 363<br>425              | 3300                    | 2050                    |
| 7897 $3.9$ $81.4$ $4.0$ $81.4$ $0.0268$ $1548$ $1075$ $904$ $560$ $5091$ $31674$ $8927$ $3.4$ $84.8$ $3.4$ $84.7$ $0.0237$ $1750$ $1215$ $1022$ $633$ $5755$ $3574$ $9662$ $2.0$ $86.8$ $2.0$ $86.7$ $0.0219$ $1895$ $1316$ $1106$ $685$ $6227$ $8711$ $10465$ $1.7$ $88.5$ $1.7$ $88.5$ $0.0203$ $2052$ $1425$ $1198$ $742$ $6745$ $41911$ $12296$ $3.2$ $91.7$ $3.2$ $91.7$ $0.0172$ $2411$ $1674$ $1407$ $871$ $7918$ $4924$ $14346$ $2.6$ $94.3$ $0.0148$ $2813$ $1953$ $1642$ $1016$ $9236$ $5744$ $16397$ $2.1$ $96.4$ $0.0129$ $3215$ $2233$ $1876$ $1161$ $10555$ $6568$ $18496$ $1.6$ $98.0$ $0.0115$ $3627$ $2519$ $2117$ $1311$ $11918$ $7409$ $20495$ $0.8$ $98.8$ $0.0092$ $4540$ $3153$ $2650$ $1640$ $14909$ $9274$ $25069$ $0.2$ $99.7$ $0.0078$ $5322$ $3966$ $3106$ $1923$ $17482$ $10871$ $29174$ $0.2$ $99.7$ $0.0077$ $5761$ $4001$ $3362$ $2081$ $18918$ $11768$ $31806$ $0.0$ $100.0$ $0.0077$ $7576$ $4688$ $3940$ $2233$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7033                           | 6.7         | 77.5               | 6.7        | 77.4                         | 0.0301               | 1379             | 958                  | 805               | 498                     | 4527                    | 2818                    |
| 892/         3.4         84.8         3.4         84.7         0.023         17.50         1215         1022         633         5753         3574           9662         2.0         86.8         2.0         86.7         0.0219         1895         1316         1106         685         6227         3871           10465         1.7         88.5         1.7         88.5         0.0203         2052         1425         1198         742         6745         4191           12266         3.2         91.7         3.2         91.7         0.0172         2411         1674         1407         871         7918         4924           16397         2.1         96.4         0.0129         3215         2233         1876         1161         10555         6568           18496         1.6         98.0         0.013         4019         2791         2345         1452         13200         8209           20495         0.8         98.8         0.0003         4019         2791         2345         1452         13200         8209           23155         0.6         99.5         0.6         99.5         0.0092         4540         3153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7897                           | 3.9         | 81.4               | 4.0        | 81.4                         | 0.0268               | 1548             | 1075                 | 904               | 560                     | 5091                    | 3162                    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8927<br>9662                   | 2.0         | 84.8<br>86.8       | 3.4<br>2.0 | 84.7<br>86.7                 | 0.0237               | 1/50             | 1215                 | 11022             | 685                     | 6227                    | 3871                    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10465                          | 1.7         | 88.5               | 1.7        | 88.5                         | 0.0203               | 2052             | 1425                 | 1198              | 742                     | 6745                    | 4191                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12296                          | 3.2         | 91.7               | 3.2        | 91.7                         | 0.0172               | 2411             | 1674                 | 1407              | 871                     | 7918                    | 4924                    |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16397                          | 2.6         | 94.5<br>96.4       | 2.6        | 94.3<br>96.4                 | 0.0148               | 3215             | 2233                 | 1842              | 1161                    | 10555                   | 5744<br>6568            |
| 20495         0.8         98.8         0.8         98.8         0.0092         4540         3153         2650         1452         13200         8209           23155         0.6         99.5         0.6         99.5         0.0092         4540         3153         2650         1640         14909         9274           25069         0.2         99.7         0.2         99.7         0.0085         4915         31413         2869         1776         16145         10038           27141         0.2         99.9         0.2         99.9         0.0072         5761         4001         3362         2081         18918         11768           31806         0.0         100.0         0.0         0.0067         6236         4331         3640         2253         20482         12738           34424         0.0         100.0         0.0062         6750         4688         3940         2439         22173         13788           37194         0.0         100.0         0.0057         7293         5065         4257         2635         23955         14897           40344         0.0         100.0         0.0040         0.0049         8548                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18496                          | 1.6         | 98.0               | 1.6        | 98.0                         | 0.0115               | 3627             | 2519                 | 2117              | 1311                    | 11918                   | 7409                    |
| 2102         0.0         27.3         0.00         27.3         0.002         49.40         5153         2650         1640         14909         92/2           2506         0.2         99.7         0.2         99.7         0.0085         4915         3413         2869         1776         16145         10038           27141         0.2         99.9         0.2         99.9         0.0078         5322         3696         3106         1923         17482         10871           29379         0.1         100.0         0.1         100.0         0.0072         5761         4001         3362         2081         18918         11768           31806         0.0         100.0         0.0         0.0067         6236         4331         3640         2253         20482         12738           34424         0.0         100.0         0.0062         6750         4688         3940         2439         22173         13788           37194         0.0         100.0         0.0057         7293         5065         4257         2635         23955         14897           40344         0.0         100.0         0.0         0.0049         8548                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20495                          | 0.8         | 98.8               | 0.8        | 98.8                         | 0.0103               | 4019             | 2791                 | 2345              | 1452                    | 13200                   | 8209                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25155                          | 0.6         | 99.5<br>99.7       | 0.6        | 99.5<br>99.7                 | 0.0092               | 4540             | 3413                 | 2850              | 1040                    | 14909                   | 9274 10038              |
| 29379         0.1         100.0         0.1         100.0         0.0072         5761         4001         3362         2081         18918         11768           31806         0.0         100.0         0.0         100.0         0.0067         6236         4331         3640         2253         20482         12738           34424         0.0         100.0         0.0062         6750         4688         3940         2439         22173         13788           37194         0.0         100.0         0.0         100.0         0.0057         7293         5065         4257         2635         23955         14897           40344         0.0         100.0         0.0         0.0057         7293         5065         4257         2635         23955         14897           40344         0.0         100.0         0.0         0.0049         8548         5936         4989         3088         28073         17459           47294         0.0         100.0         0.0045         9273         6440         5412         3350         30455         18941           51169         0.0         100.0         0.0041         10033         6967         5856<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27141                          | 0.2         | 99.9               | 0.2        | 99.9                         | 0.0078               | 5322             | 3696                 | 3106              | 1923                    | 17482                   | 10871                   |
| 5 1000         0.0         100.0         0.0         100.0         0.00         62.50         43.51         3640         2253         20482         127.88           34424         0.0         100.0         0.0         100.0         0.0062         6750         4688         3940         2439         22173         13788           37194         0.0         100.0         0.0         100.0         0.0057         7293         5065         4257         2635         23955         14897           40344         0.0         100.0         0.0         100.0         0.0057         7293         5065         4257         2635         23955         14897           43346         0.0         100.0         0.0         0.0049         8548         5936         4989         3088         28073         17459           47294         0.0         100.0         0.0         0.0045         9273         6440         5412         3350         30455         18941           51169         0.0         100.0         0.0041         10033         6967         5856         3625         32955         20491           55385         0.0         100.0         0.0035         117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29379                          | 0.1         | 100.0              | 0.1        | 100.0                        | 0.0072               | 5761             | 4001                 | 3362              | 2081                    | 18918                   | 11768                   |
| 37194         0.0         100.0         0.0         100.0         0.0057         7293         5065         4257         2635         23955         14897           40344         0.0         100.0         0.0         100.0         0.0057         7293         5065         4257         2635         23955         14897           40344         0.0         100.0         0.0         100.0         0.0053         7911         5494         4617         2858         25982         16159           43596         0.0         100.0         0.0         0.0049         8548         5936         4989         3088         28073         17459           47294         0.0         100.0         0.0         0.0045         9273         6440         5412         3350         30455         18941           51169         0.0         100.0         0.0041         10033         6967         5856         3625         32955         20491           55385         0.0         100.0         0.0035         11740         8153         6852         4742         38564         23975         2182           59876         0.0         100.0         0.0035         11740         815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34424                          | 0.0         | 100.0              | 0.0        | 100.0                        | 0.0067               | 6750             | 4551<br>4688         | 3040<br>3940      | 2233                    | 20482 22173             | 12758                   |
| 40344         0.0         100.0         0.0         100.0         0.0053         7911         5494         4617         2858         25982         16159           43596         0.0         100.0         0.0         100.0         0.0049         8548         5936         4989         3088         28073         17459           47294         0.0         100.0         0.0         100.0         0.0045         9273         6440         5412         3350         30455         18941           51169         0.0         100.0         0.0         0.0041         10033         6967         5856         3625         32955         20491           55385         0.0         100.0         0.0         100.0         0.0035         11740         8153         6852         4742         38543         23854           59876         0.0         100.0         0.0035         11740         8153         6852         4742         38543         23854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 37194                          | 0.0         | 100.0              | 0.0        | 100.0                        | 0.0057               | 7293             | 5065                 | 4257              | 2635                    | 23955                   | 14897                   |
| 47294         0.0         100.0         0.0         100.0         0.0045         \$273         6440         5412         3350         30455         18941           51169         0.0         100.0         0.0         0.0045         \$273         6440         5412         3350         30455         18941           51169         0.0         100.0         0.0         0.0041         10033         6967         5856         3625         32955         20491           55385         0.0         100.0         0.0         0.0035         11740         8153         6852         4742         38564         23975         2182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40344                          | 0.0         | 100.0              | 0.0        | 100.0                        | 0.0053               | 7911             | 5494                 | 4617              | 2858                    | 25982                   | 16159                   |
| 51169         0.0         100.0         0.0041         10033         6967         5856         3625         32955         20491           55385         0.0         100.0         0.0         100.0         0.0038         10860         7542         6338         3924         35673         22182           59876         0.0         100.0         0.0035         11740         8153         6852         4242         38564         23979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45596                          | 0.0         | 100.0              | 0.0        | 100.0                        | 0.0049               | 8548<br>9273     | 5936<br>6440         | 4989<br>5412      | 3088                    | 28073                   | 17459                   |
| 55385         0.0         100.0         0.0038         10860         7542         6338         3924         35673         22182           59876         0.0         100.0         0.0035         11740         8153         6852         4242         38564         23979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51169                          | 0.0         | 100.0              | 0.0        | 100.0                        | 0.0041               | 10033            | 6967                 | 5856              | 3625                    | 32955                   | 20491                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55385<br>59876                 | 0.0         | 100.0              | 0.0        | 100.0                        | 0.0038               | 10860<br>11740   | 7542                 | 6338<br>6852      | 3924<br>4242            | 35673<br>38564          | 22182                   |

 55385
 0.0
 100.0
 0.0
 100.0

 59876
 0.0
 100.0
 0.0
 100.0

 (A) Interpreted Capillary Pressure Chart



(B) Capillary Pressure Plot



(C) Pore Size Distribution plot

# WellSole-1Sample Depth805.9 m



| Client         Geoscience AVictoria         Density Gradients (psi/foot)         Conversion Parameters (dynes/cm)           Well         Sole-1         Typical         air/water         air/oil         oil/wa |             |                  |            |                    |                  |                 |                     |                |                |              |                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|------------|--------------------|------------------|-----------------|---------------------|----------------|----------------|--------------|------------------------|
| Well                                                                                                                                                                                                             | Sole-1      | in victoria      |            | Density G          | Typical          |                 | Conv                | air/water      | air/oil        | oil/water    | CO <sub>2</sub> /water |
| en                                                                                                                                                                                                               | 5010 1      |                  |            | Water:             | 0.440            | Laboratory Thet | a                   | 0.0            | 0.0            | 30.0         | 0.0                    |
| Test Method                                                                                                                                                                                                      | Air/Mercury | Capillary Pressu | ire        | Oil:               | 0.330            | Laboratory IFT  |                     | 72.0           | 24.0           | 48.0         | 72.0                   |
|                                                                                                                                                                                                                  |             |                  |            | Gas:               | 0.100            | Reservoir Theta |                     | 0.0            |                | 30.0         | 0.0                    |
| Sample                                                                                                                                                                                                           | S1          |                  |            |                    |                  | Reservoir IFT   |                     | 50.0           |                | 30.0         | 26.0                   |
| Depth                                                                                                                                                                                                            | 805.90 m    |                  |            | CO2 Density        | 0.259            | Laboratory Tcos | Theta               | 72.0           | 24.0           | 42.0         | 72.0                   |
|                                                                                                                                                                                                                  |             |                  |            |                    |                  | Reservoir TcosT | heta                | 50.0           |                | 26.0         | 26.0                   |
|                                                                                                                                                                                                                  | ,           | 0.405            |            |                    | Estimated Column | Entry P         | ressure (psia)      | Displacement F | ressure (psia) | Threshold P  | ressure (psia)         |
| Pore radius (µ                                                                                                                                                                                                   | .m)         | 0.405            |            | System             | Height (feet)    | Lab             | Res Con             | Lab            | Resv           | Lab          | Resv                   |
|                                                                                                                                                                                                                  |             |                  |            | C W                | 105              | 203             | - 25.8              | 102            | - 70.8         | 131          | - 8 00                 |
|                                                                                                                                                                                                                  |             |                  |            | 0-W                | 169              | 17.2            | 18.6                | 34.0           | 36.8           | 43.6         | 47.2                   |
|                                                                                                                                                                                                                  |             |                  |            | CO <sub>2</sub> -W | 58               | 51.6            | 18.6                | 102            | 36.8           | 131          | 47.2                   |
|                                                                                                                                                                                                                  |             |                  |            |                    | ••               |                 |                     |                |                |              |                        |
|                                                                                                                                                                                                                  |             |                  |            |                    |                  | Equivalent      | Injection Pressures | Oil/Brine      | Oil/Brine      | Height Above | Height Above           |
|                                                                                                                                                                                                                  | Rav         | v Data           | Conforma   | ince Corrected     | Pore             | Air/Brine       | Air/Brine           | Lab            | Reservoir      | Free Water   | Free Water             |
| Pressure                                                                                                                                                                                                         | Intrusion   | Saturation       | Intrusion  | Saturation         | Diameter         | Lab             | Res Con             | Conditions     | Conditions     | Oil-Water    | Gas-Water              |
| (psia)                                                                                                                                                                                                           | (percent)   | (percent)        | (percent)  | (percent)          | (µm)             | (psi)           | (psi)               | (psi)          | (psi)          | (feet)       | (feet)                 |
|                                                                                                                                                                                                                  |             |                  |            |                    |                  |                 |                     |                |                |              |                        |
| 1.00                                                                                                                                                                                                             | 0.0         | 0.0              | 0.0        | 0.0                | 211              | 0.20            | 0.14                | 0.11           | 0.07           | 0.64         | 0.40                   |
| 1.98                                                                                                                                                                                                             | 2.7         | 2.7              | 0.0        | 0.0                | 107              | 0.39            | 0.27                | 0.23           | 0.14           | 1.28         | 0.79                   |
| 2.73                                                                                                                                                                                                             | 1.3         | 4.1              | 0.0        | 0.0                | 77.6             | 0.54            | 0.37                | 0.31           | 0.19           | 1.75         | 1.09                   |
| 3.18                                                                                                                                                                                                             | 0.6         | 4.0              | 0.0        | 0.0                | 56.0             | 0.62            | 0.43                | 0.30           | 0.23           | 2.03         | 1.27                   |
| 4 38                                                                                                                                                                                                             | 0.7         | 61               | 0.0        | 0.0                | 48.4             | 0.86            | 0.51                | 0.45           | 0.20           | 2.40         | 1.49                   |
| 5.18                                                                                                                                                                                                             | 0.7         | 6.7              | 0.0        | 0.0                | 41.0             | 1.02            | 0.71                | 0.59           | 0.37           | 3.34         | 2.08                   |
| 5.98                                                                                                                                                                                                             | 0.6         | 7.3              | 0.0        | 0.0                | 35.5             | 1.17            | 0.81                | 0.68           | 0.42           | 3.85         | 2.39                   |
| 6.97                                                                                                                                                                                                             | 0.8         | 8.1              | 0.0        | 0.0                | 30.4             | 1.37            | 0.95                | 0.80           | 0.49           | 4.49         | 2.80                   |
| 8.27                                                                                                                                                                                                             | 0.9         | 9.0              | 0.0        | 0.0                | 25.6             | 1.62            | 1.13                | 0.95           | 0.59           | 5.33         | 3.32                   |
| 9.97                                                                                                                                                                                                             | 0.8         | 9.8              | 0.0        | 0.0                | 21.3             | 1.95            | 1.35                | 1.14           | 0.71           | 6.42         | 3.97                   |
| 11.5                                                                                                                                                                                                             | 0.5         | 10.3             | 0.0        | 0.0                | 18.5             | 2.25            | 1.56                | 1.32           | 0.82           | 7.43         | 4.59                   |
| 13.5                                                                                                                                                                                                             | 0.8         | 11.1             | 0.0        | 0.0                | 15.7             | 2.65            | 1.84                | 1.54           | 0.95           | 8.66         | 5.41                   |
| 18.5                                                                                                                                                                                                             | 0.0         | 12.5             | 0.0        | 0.0                | 11.7             | 3.63            | 2.11                | 2.12           | 1.10           | 11.9         | 7.41                   |
| 21.6                                                                                                                                                                                                             | 0.8         | 13.3             | 0.0        | 0.0                | 9.83             | 4.24            | 2.94                | 2.47           | 1.53           | 13.9         | 8.65                   |
| 25.3                                                                                                                                                                                                             | 0.6         | 13.8             | 0.0        | 0.0                | 8.39             | 4.96            | 3.44                | 2.90           | 1.80           | 16.4         | 10.1                   |
| 30.0                                                                                                                                                                                                             | 0.4         | 14.3             | 0.0        | 0.0                | 7.08             | 5.88            | 4.08                | 3.43           | 2.12           | 19.3         | 12.0                   |
| 37.2                                                                                                                                                                                                             | 0.1         | 14.4             | 0.0        | 0.0                | 5.70             | 7.29            | 5.06                | 4.26           | 2.64           | 24.0         | 14.9                   |
| 47.2                                                                                                                                                                                                             | 0.2         | 14.5             | 0.0        | 0.0                | 4.49             | 9.25            | 6.42                | 5.40           | 3.34           | 30.4         | 18.9                   |
| 56.6                                                                                                                                                                                                             | 0.2         | 14./             | 0.0        | 0.0                | 3.75             | 11.1            | /./1                | 6.48<br>7.50   | 4.01           | 30.5         | 22.7                   |
| 80.4                                                                                                                                                                                                             | 0.4         | 15.1             | 0.0        | 0.0                | 2.64             | 15.0            | 9.05                | 9.20           | 4.70           | 42.7         | 20.0                   |
| 93.0                                                                                                                                                                                                             | 0.6         | 16.3             | 0.0        | 0.0                | 2.28             | 18.2            | 12.6                | 10.6           | 6.56           | 59.6         | 37.1                   |
| 111                                                                                                                                                                                                              | 0.6         | 16.9             | 0.0        | 0.0                | 1.91             | 21.8            | 15.1                | 12.7           | 7.86           | 71.5         | 44.4                   |
| 129                                                                                                                                                                                                              | 0.6         | 17.5             | 0.0        | 0.0                | 1.65             | 25.3            | 17.6                | 14.8           | 9.16           | 83.3         | 51.8                   |
| 152                                                                                                                                                                                                              | 0.7         | 18.2             | 0.0        | 0.0                | 1.39             | 29.8            | 20.7                | 17.4           | 10.8           | 98.2         | 60.9                   |
| 179                                                                                                                                                                                                              | 0.8         | 18.9             | 0.0        | 0.0                | 1.18             | 35.1            | 24.4                | 20.5           | 12.7           | 115          | 71.8                   |
| 210                                                                                                                                                                                                              | 0.8         | 19.7             | 0.0        | 0.0                | 1.01             | 41.2            | 28.6                | 24.0           | 14.9           | 135          | 84.1                   |
| 247                                                                                                                                                                                                              | 0.9         | 20.6             | 0.0        | 0.0                | 0.860            | 48.4            | 33.0                | 28.5           | 20.7           | 139          | 98.8                   |
| 343                                                                                                                                                                                                              | 1.1         | 23.0             | 1.6        | 1.6                | 0.720            | 67.3            | 46.7                | 39.3           | 20.7           | 221          | 137                    |
| 401                                                                                                                                                                                                              | 1.5         | 24.5             | 1.9        | 3.5                | 0.528            | 78.6            | 54.6                | 45.9           | 28.4           | 258          | 161                    |
| 472                                                                                                                                                                                                              | 1.8         | 26.3             | 2.3        | 5.8                | 0.449            | 92.5            | 64.2                | 54.0           | 33.4           | 304          | 189                    |
| 553                                                                                                                                                                                                              | 2.2         | 28.4             | 2.8        | 8.6                | 0.383            | 108             | 75.0                | 63.3           | 39.2           | 356          | 221                    |
| 647                                                                                                                                                                                                              | 2.7         | 31.1             | 3.4        | 12.0               | 0.328            | 127             | 88.2                | 74.0           | 45.8           | 416          | 259                    |
| 757                                                                                                                                                                                                              | 3.2         | 34.3             | 4.1        | 16.1               | 0.280            | 148             | 103                 | 86.6           | 53.6           | 487          | 303                    |
| 1048                                                                                                                                                                                                             | 5.7         | 38.0<br>42.4     | 4.7        | 20.8               | 0.239            | 205             | 121                 | 102            | 74.3           | 574          | 330<br>418             |
| 1227                                                                                                                                                                                                             | 47          | 47.1             | 6.0        | 32.4               | 0.173            | 203             | 142                 | 140            | 86.7           | 788          | 491                    |
| 1439                                                                                                                                                                                                             | 5.3         | 52.4             | 6.8        | 39.2               | 0.147            | 282             | 196                 | 165            | 102            | 927          | 576                    |
| 1688                                                                                                                                                                                                             | 5.9         | 58.3             | 7.5        | 46.7               | 0.126            | 331             | 230                 | 193            | 119            | 1082         | 676                    |
| 1828                                                                                                                                                                                                             | 3.0         | 61.3             | 3.9        | 50.6               | 0.116            | 358             | 249                 | 209            | 129            | 1173         | 732                    |
| 2142                                                                                                                                                                                                             | 5.8         | 67.2             | 7.5        | 58.0               | 0.0990           | 420             | 292                 | 245            | 152            | 1382         | 859                    |
| 2510                                                                                                                                                                                                             | 5.4         | 72.5             | 6.8        | 64.9               | 0.0845           | 492             | 342                 | 287            | 178            | 1618         | 1006                   |
| 2945                                                                                                                                                                                                             | 4./         | //.2<br>81.2     | 5.0<br>5.0 | 70.9               | 0.0720           | 577             | 401                 | 337<br>395     | 209            | 1900<br>2227 | 11/9                   |
| 4040                                                                                                                                                                                                             | 3.3         | 84.5             | 4.2        | 80 2               | 0.0525           | 792             | 550                 | 462            | 286            | 2600         | 1618                   |
| 4728                                                                                                                                                                                                             | 3.7         | 88.2             | 4.7        | 84.9               | 0.0448           | 927             | 644                 | 541            | 335            | 3045         | 1894                   |
| 5114                                                                                                                                                                                                             | 1.2         | 89.4             | 1.5        | 86.4               | 0.0415           | 1003            | 697                 | 585            | 362            | 3291         | 2050                   |
| 6002                                                                                                                                                                                                             | 2.2         | 91.5             | 2.8        | 89.2               | 0.0353           | 1177            | 817                 | 687            | 425            | 3864         | 2403                   |
| 7033                                                                                                                                                                                                             | 1.9         | 93.5             | 2.5        | 91.7               | 0.0301           | 1379            | 958                 | 805            | 498            | 4527         | 2818                   |
| 7895                                                                                                                                                                                                             | 1.4         | 94.8             | 1.7        | 93.4               | 0.0269           | 1548            | 1075                | 904            | 560            | 5091         | 3162                   |
| 8920                                                                                                                                                                                                             | 1.4         | 96.2             | 1.8        | 95.2               | 0.0238           | 1749            | 1215                | 1021           | 632            | 5745         | 35/4                   |
| 10452                                                                                                                                                                                                            | 0.9         | 97.1             | 1.1        | 96.5               | 0.0220           | 2049            | 1314                | 1104           | 740            | 6209         | 3803<br>4185           |
| 12283                                                                                                                                                                                                            | 1.2         | 99.2             | 1.6        | 99.0               | 0.0173           | 2408            | 1672                | 1406           | 870            | 7909         | 4918                   |
| 14333                                                                                                                                                                                                            | 0.6         | 99.8             | 0.8        | 99.7               | 0.0148           | 2810            | 1951                | 1640           | 1015           | 9227         | 5738                   |
| 16381                                                                                                                                                                                                            | 0.2         | 100.0            | 0.3        | 100.0              | 0.0129           | 3212            | 2231                | 1875           | 1161           | 10555        | 6562                   |
| 18481                                                                                                                                                                                                            | 0.0         | 100.0            | 0.0        | 100.0              | 0.0115           | 3624            | 2517                | 2115           | 1309           | 11900        | 7403                   |
| 20481                                                                                                                                                                                                            | 0.0         | 100.0            | 0.0        | 100.0              | 0.0104           | 4016            | 2789                | 2344           | 1451           | 13191        | 8203                   |
| 25149                                                                                                                                                                                                            | 0.0         | 100.0            | 0.0        | 100.0              | 0.0092           | 4539            | 3152                | 2649           | 1640           | 14909        | 9271                   |
| 23064                                                                                                                                                                                                            | 0.0         | 100.0            | 0.0        | 100.0              | 0.0085           | 4915            | 3413                | ∠808<br>3105   | 1//5           | 10130        | 10038                  |
| 29376                                                                                                                                                                                                            | 0.0         | 100.0            | 0.0        | 100.0              | 0.0078           | 5760            | 4000                | 3362           | 2081           | 1/4/5        | 11765                  |
| 31804                                                                                                                                                                                                            | 0.0         | 100.0            | 0.0        | 100.0              | 0.0067           | 6236            | 4331                | 3640           | 2253           | 20482        | 12738                  |
| 34421                                                                                                                                                                                                            | 0.0         | 100.0            | 0.0        | 100.0              | 0.0062           | 6749            | 4687                | 3939           | 2438           | 22164        | 13785                  |
| 37192                                                                                                                                                                                                            | 0.0         | 100.0            | 0.0        | 100.0              | 0.0057           | 7293            | 5065                | 4256           | 2635           | 23955        | 14897                  |
| 40343                                                                                                                                                                                                            | 0.0         | 100.0            | 0.0        | 100.0              | 0.0053           | 7910            | 5493                | 4617           | 2858           | 25982        | 16156                  |
| 43591                                                                                                                                                                                                            | 0.0         | 100.0            | 0.0        | 100.0              | 0.0049           | 8547            | 5935                | 4989           | 3088           | 28073        | 17456                  |
| 47291                                                                                                                                                                                                            | 0.0         | 100.0            | 0.0        | 100.0              | 0.0045           | 9273            | 6440                | 5412           | 3350           | 30455        | 18941                  |
| 511/2                                                                                                                                                                                                            | 0.0         | 100.0            | 0.0        | 100.0              | 0.0041           | 10034           | 0908                | 2826           | 3025           | 32933        | 20494                  |
| 59880                                                                                                                                                                                                            | 0.0         | 100.0            | 0.0        | 100.0              | 0.0035           | 11741           | 8153                | 6853           | 4242           | 38564        | 23979                  |
|                                                                                                                                                                                                                  |             |                  |            | V                  |                  |                 |                     |                |                |              | · · · · · ·            |



(B) Capillary Pressure Plot



(C) Pore Size Distribution plot

| Well<br>Sample | Depth        |                 |           | Sperm Wł<br>653.8 m | nale Head-1         |                                  |                  |                 |                 |                |                        |
|----------------|--------------|-----------------|-----------|---------------------|---------------------|----------------------------------|------------------|-----------------|-----------------|----------------|------------------------|
| Client         | Geoscience   | Victoria        |           | Density G           | radients (nsi/foot) | 1                                | Con              | version Paramet | ers (dynes/cm)  |                |                        |
| Well           | Sperm What   | e Head-1        |           | Density G           | Typical             |                                  | Con              | air/water       | air/oil         | oil/water      | CO <sub>2</sub> /water |
|                |              |                 |           | Water:              | 0.440               | Laboratory The                   | ta               | 0.0             | 0.0             | 30.0           | 0.0                    |
| Test Method    | Air/Mercury  | Capillary Press | ure       | Oil:                | 0.330               | Laboratory IFT                   |                  | 72.0            | 24.0            | 48.0           | 72.0                   |
| Sample         | SWH1-1       |                 |           | Gas:                | 0.100               | Reservoir Theta<br>Reservoir IFT |                  | 50.0            |                 | 30.0           | 26.0                   |
| Depth          | 653.80 m     |                 |           | CO2 Density         | 0.165               | Laboratory Tcos                  | sTheta           | 72.0            | 24.0            | 42.0           | 72.0                   |
|                |              |                 |           |                     |                     | Reservoir Tcos                   | Theta            | 50.0            |                 | 26.0           | 26.0                   |
|                |              |                 |           | -                   | Estimated Column    | Entry I                          | ressure (psia)   | Displacement I  | Pressure (psia) | Threshold P    | ressure (psia)         |
| Pore radius (µ | .m)          | 0.056           |           | System              | Height (feet)       | Lab                              | Res Con          | Lab<br>2157     | Resv            | Lab<br>2220    | Resv                   |
|                |              |                 |           | G-W                 | 756                 | 370                              | 257              | 423             | 294             | 437            | 304                    |
|                |              |                 |           | O-W                 | 1215                | 123                              | 134              | 141             | 153             | 146            | 158                    |
|                |              |                 |           | CO <sub>2</sub> -W  | 370                 | 370                              | 134              | 423             | 153             | 437            | 158                    |
|                |              |                 |           |                     |                     | Eminut                           | Iniantian Damana | Oil/Dain a      | O:1/Daina       | II             | II.:-b4 Ab             |
|                | Raw          | / Data          | Conform   | ance Corrected      | Pore                | Air/Brine                        | Air/Brine        | Lab             | Reservoir       | Free Water     | Free Water             |
| Pressure       | Intrusion    | Saturation      | Intrusion | Saturation          | Diameter            | Lab                              | Res Con          | Conditions      | Conditions      | Oil-Water      | Gas-Water              |
| (psia)         | (percent)    | (percent)       | (percent) | (percent)           | (µm)                | (psi)                            | (psi)            | (psi)           | (psi)           | (feet)         | (feet)                 |
|                |              |                 |           |                     |                     |                                  |                  |                 |                 |                |                        |
| 1.00           | 0.0          | 0.0             | 0.0       | 0.0                 | 211                 | 0.20                             | 0.14             | 0.11            | 0.07            | 0.64           | 0.40                   |
| 1.98           | 0.0          | 0.0             | 0.0       | 0.0                 | 107                 | 0.39                             | 0.27             | 0.23            | 0.14            | 1.28           | 0.79                   |
| 2.73           | 2.0          | 2.0             | 0.0       | 0.0                 | 77.6                | 0.54                             | 0.37             | 0.31            | 0.19            | 1.75           | 1.09                   |
| 3.18           | 0.7          | 2.6             | 0.0       | 0.0                 | 66.7<br>56.9        | 0.62                             | 0.43             | 0.36            | 0.23            | 2.05           | 1.27                   |
| 4.38           | 0.4          | 3.4             | 0.0       | 0.0                 | 48.4                | 0.75                             | 0.60             | 0.43            | 0.20            | 2.40           | 1.49                   |
| 5.18           | 0.4          | 3.8             | 0.0       | 0.0                 | 41.0                | 1.02                             | 0.71             | 0.59            | 0.37            | 3.34           | 2.08                   |
| 5.98           | 0.3          | 4.1             | 0.0       | 0.0                 | 35.5                | 1.17                             | 0.81             | 0.68            | 0.42            | 3.85           | 2.39                   |
| 6.97           | 0.3          | 4.4             | 0.0       | 0.0                 | 30.4                | 1.37                             | 0.95             | 0.80            | 0.49            | 4.49           | 2.80                   |
| 8.27<br>9.97   | 0.3          | 4.7<br>5.0      | 0.0       | 0.0                 | 21.3                | 1.02                             | 1.15             | 1 14            | 0.59            | 5.55<br>6.42   | 3.52<br>3.97           |
| 11.5           | 0.5          | 5.5             | 0.0       | 0.0                 | 18.5                | 2.25                             | 1.56             | 1.32            | 0.82            | 7.43           | 4.59                   |
| 13.5           | 0.3          | 5.8             | 0.0       | 0.0                 | 15.7                | 2.65                             | 1.84             | 1.54            | 0.95            | 8.66           | 5.41                   |
| 15.5           | 0.3          | 6.1             | 0.0       | 0.0                 | 13.7                | 3.04                             | 2.11             | 1.77            | 1.10            | 10.0           | 6.21                   |
| 21.6           | 0.3          | 6.4             | 0.0       | 0.0                 | 9.83                | 4 24                             | 2.52             | 2.12            | 1.51            | 13.9           | 8 65                   |
| 25.3           | 0.3          | 7.1             | 0.0       | 0.0                 | 8.39                | 4.96                             | 3.44             | 2.90            | 1.80            | 16.4           | 10.1                   |
| 30.0           | 0.4          | 7.5             | 0.0       | 0.0                 | 7.08                | 5.88                             | 4.08             | 3.43            | 2.12            | 19.3           | 12.0                   |
| 37.2           | 0.5          | 8.0             | 0.0       | 0.0                 | 5.70                | 7.29                             | 5.06             | 4.26            | 2.64            | 24.0           | 14.9                   |
| 47.2           | 0.1          | 8.1<br>8.2      | 0.0       | 0.0                 | 4.49                | 9.25                             | 6.42<br>7.71     | 5.40<br>6.48    | 5.54<br>4.01    | 30.4           | 18.9                   |
| 66.3           | 0.1          | 8.4             | 0.0       | 0.0                 | 3.20                | 13.0                             | 9.03             | 7.59            | 4.70            | 42.7           | 26.6                   |
| 80.4           | 0.2          | 8.5             | 0.0       | 0.0                 | 2.64                | 15.8                             | 11.0             | 9.20            | 5.70            | 51.8           | 32.4                   |
| 93.0           | 0.2          | 8.8             | 0.0       | 0.0                 | 2.28                | 18.2                             | 12.6             | 10.6            | 6.56            | 59.6           | 37.1                   |
| 111            | 0.2          | 9.0             | 0.0       | 0.0                 | 1.91                | 21.8                             | 15.1             | 12.7            | 7.86            | 71.5           | 44.4                   |
| 152            | 0.2          | 9.5             | 0.0       | 0.0                 | 1.39                | 29.8                             | 20.7             | 17.4            | 10.8            | 98.2           | 60.9                   |
| 179            | 0.3          | 9.7             | 0.0       | 0.0                 | 1.18                | 35.1                             | 24.4             | 20.5            | 12.7            | 115            | 71.8                   |
| 210            | 0.3          | 10.0            | 0.0       | 0.0                 | 1.01                | 41.2                             | 28.6             | 24.0            | 14.9            | 135            | 84.1                   |
| 247            | 0.3          | 10.3            | 0.0       | 0.0                 | 0.860               | 48.4                             | 33.6             | 28.3            | 17.5            | 159            | 98.8                   |
| 343            | 0.3          | 10.0            | 0.0       | 0.0                 | 0.619               | 67.3                             | 46.7             | 39.3            | 20.7            | 221            | 137                    |
| 401            | 0.4          | 11.3            | 0.0       | 0.0                 | 0.528               | 78.6                             | 54.6             | 45.9            | 28.4            | 258            | 161                    |
| 472            | 0.4          | 11.6            | 0.0       | 0.0                 | 0.449               | 92.5                             | 64.2             | 54.0            | 33.4            | 304            | 189                    |
| 553            | 0.4          | 12.0            | 0.0       | 0.0                 | 0.383               | 108                              | 75.0             | 63.3<br>74.0    | 39.2            | 356            | 221                    |
| 757            | 0.5          | 12.4            | 0.0       | 0.0                 | 0.280               | 148                              | 103              | 86.6            | 53.6            | 487            | 303                    |
| 887            | 0.6          | 13.5            | 0.0       | 0.0                 | 0.239               | 174                              | 121              | 102             | 63.1            | 574            | 356                    |
| 1048           | 0.7          | 14.2            | 0.0       | 0.0                 | 0.202               | 205                              | 142              | 120             | 74.3            | 675            | 418                    |
| 1227           | 0.9          | 15.0            | 0.0       | 0.0                 | 0.173               | 241                              | 167              | 140             | 86.7            | /88            | 491                    |
| 1688           | 1.4          | 17.4            | 1.6       | 1.6                 | 0.126               | 331                              | 230              | 193             | 119             | 1082           | 676                    |
| 1828           | 2.3          | 19.7            | 2.7       | 4.4                 | 0.116               | 358                              | 249              | 209             | 129             | 1173           | 732                    |
| 2142           | 2.2          | 22.0            | 2.7       | 7.0                 | 0.0990              | 420                              | 292              | 245             | 152             | 1382           | 859                    |
| 2510           | 22.2<br>54 8 | 44.2<br>99.0    | 26.5      | 55.5<br>98.8        | 0.0845              | 492                              | 342<br>401       | 287             | 1/8             | 1900           | 1006                   |
| 3449           | 0.8          | 99.8            | 0.9       | 99.7                | 0.0615              | 676                              | 469              | 395             | 245             | 2227           | 1379                   |
| 4040           | 0.0          | 99.8            | 0.0       | 99.7                | 0.0525              | 792                              | 550              | 462             | 286             | 2600           | 1618                   |
| 4728           | 0.0          | 99.8            | 0.0       | 99.7                | 0.0448              | 927                              | 644              | 541             | 335             | 3045           | 1894                   |
| 5114           | 0.0          | 99.8<br>99.8    | 0.0       | 99.7<br>99.7        | 0.0415              | 1003                             | 697<br>817       | 585<br>687      | 362<br>425      | 3291           | 2050                   |
| 7033           | 0.0          | 99.8            | 0.1       | 99.8                | 0.0301              | 1379                             | 958              | 805             | 498             | 4527           | 2818                   |
| 7895           | 0.0          | 99.8            | 0.0       | 99.8                | 0.0269              | 1548                             | 1075             | 904             | 560             | 5091           | 3162                   |
| 8920           | 0.1          | 99.9            | 0.1       | 99.9                | 0.0238              | 1749                             | 1215             | 1021            | 632             | 5745           | 3574                   |
| 10452          | 0.0          | 99.9<br>100.0   | 0.0       | 99.9<br>100.0       | 0.0220              | 2049                             | 1314             | 1104            | 683<br>740      | 6209           | 3865                   |
| 12283          | 0.0          | 100.0           | 0.0       | 100.0               | 0.0173              | 2408                             | 1672             | 1406            | 870             | 7909           | 4918                   |
| 14333          | 0.0          | 100.0           | 0.0       | 100.0               | 0.0148              | 2810                             | 1951             | 1640            | 1015            | 9227           | 5738                   |
| 16381          | 0.0          | 100.0           | 0.0       | 100.0               | 0.0129              | 3212                             | 2231             | 1875            | 1161            | 10555          | 6562                   |
| 18481          | 0.0          | 100.0           | 0.0       | 100.0               | 0.0115              | 3624<br>4016                     | 2517             | 2115            | 1309            | 11900          | 7403                   |
| 23149          | 0.0          | 100.0           | 0.0       | 100.0               | 0.0092              | 4539                             | 3152             | 2649            | 1640            | 14909          | 9271                   |
| 25064          | 0.0          | 100.0           | 0.0       | 100.0               | 0.0085              | 4915                             | 3413             | 2868            | 1775            | 16136          | 10038                  |
| 27135          | 0.0          | 100.0           | 0.0       | 100.0               | 0.0078              | 5321                             | 3695             | 3105            | 1922            | 17473          | 10868                  |
| 29376          | 0.0          | 100.0           | 0.0       | 100.0               | 0.0072              | 5760                             | 4000             | 3362            | 2081            | 18918          | 11765                  |
| 31804          | 0.0          | 100.0           | 0.0       | 100.0               | 0.0067              | 6236<br>6749                     | 4331<br>4687     | 3939            | 2438            | 20482          | 12/38                  |
| 37192          | 0.0          | 100.0           | 0.0       | 100.0               | 0.0057              | 7293                             | 5065             | 4256            | 2635            | 23955          | 14897                  |
| 40343          | 0.0          | 100.0           | 0.0       | 100.0               | 0.0053              | 7910                             | 5493             | 4617            | 2858            | 25982          | 16156                  |
| 43591          | 0.0          | 100.0           | 0.0       | 100.0               | 0.0049              | 8547                             | 5935             | 4989            | 3088            | 28073          | 17456                  |
| 47291 51172    | 0.0          | 100.0           | 0.0       | 100.0               | 0.0045              | 9273<br>10034                    | 6440<br>6968     | 5412<br>5856    | 3350            | 30455<br>32955 | 18941<br>20494         |
| 55387          | 0.0          | 100.0           | 0.0       | 100.0               | 0.0041              | 10860                            | 7542             | 6339            | 3924            | 35673          | 22182                  |
| 59880          | 0.0          | 100.0           | 0.0       | 100.0               | 0.0035              | 11741                            | 8153             | 6853            | 4242            | 38564          | 23979                  |

### Sperm Whale Head-1





<sup>(</sup>B) Capillary Pressure Plot



| Well<br>Sample                 | Depth          |                 |           | 5perm Wl<br>718.10 m      | hale Head-1<br>า    |                         |                     |                |                        |                            |                            |
|--------------------------------|----------------|-----------------|-----------|---------------------------|---------------------|-------------------------|---------------------|----------------|------------------------|----------------------------|----------------------------|
| Client                         | Geoscience     | Victoria        |           | Density G                 | radients (psi/foot) |                         | Conv                | ersion Paramet | ers (dvnes/cm)         |                            |                            |
| Well                           | Sperm Whal     | e Head-1        |           |                           | Typical             |                         |                     | air/water      | air/oil                | oil/water                  | CO <sub>2</sub> /water     |
| Test Method                    | Air/Mercury    | Capillary Press | aure      | Water:                    | 0.440               | Laboratory The          | ta                  | 0.0            | 0.0                    | 30.0<br>48.0               | 0.0<br>72.0                |
| rest witchiou                  | 7 mi/ wiereury | cupiliary ries. | Juic      | Gas:                      | 0.100               | Reservoir Theta         | 1                   | 0.0            | 24.0                   | 30.0                       | 0.0                        |
| Sample                         | 2              |                 |           | CO. Density               | 0.199               | Reservoir IFT           | -Th -t-             | 50.0           | 24.0                   | 30.0                       | 26.0                       |
| Depth                          | /18.10 m       |                 |           | CO <sub>2</sub> Density   | 0.188               | Reservoir Tcos          | Theta               | 50.0           | 24.0                   | 26.0                       | 26.0                       |
| Ambient Pern                   | neability      |                 |           |                           | Estimated Column    | Entry F                 | Pressure (psia)     | Displacement I | ressure (psia)         | Threshold P                | ressure (psia)             |
| Ambient Poro<br>pore radius (u | sity<br>m)     | 0.041           |           | A-Hg                      | na<br>na            | Lab<br>2591             | Res Con             | Lab<br>2794    | Resv<br>-              | Lab<br>3241                | Resv                       |
| F (1                           | )              |                 |           | G-W                       | 1038                | 508                     | 353                 | 548            | 381                    | 636                        | 442                        |
|                                |                |                 |           | O-W<br>CO <sub>2</sub> -W | 1669<br>522         | 169<br>508              | 184                 | 183<br>548     | 198<br>198             | 212<br>636                 | 230<br>230                 |
|                                |                |                 |           |                           | L                   |                         | •                   |                |                        |                            |                            |
|                                | Raw            | Data            | Conforms  | ance Corrected            | Pore                | Equivalent<br>Air/Brine | Injection Pressures | Oil/Brine      | Oil/Brine<br>Reservoir | Height Above<br>Free Water | Height Above<br>Free Water |
| Pressure                       | Intrusion      | Saturation      | Intrusion | Saturation                | Diameter            | Lab                     | Res Con             | Conditions     | Conditions             | Oil-Water                  | Gas-Water                  |
| (psia)                         | (percent)      | (percent)       | (percent) | (percent)                 | (µm)                | (psi)                   | (psi)               | (psi)          | (psi)                  | (feet)                     | (feet)                     |
| 1.01                           | 0.0            | 0.0             | 0.0       | 0.0                       | 211                 | 0.20                    | 0.14                | 0.12           | 0.07                   | 0.65                       | 0.41                       |
| 1.98                           | 0.6            | 0.6             | 0.0       | 0.0                       | 107                 | 0.39                    | 0.27                | 0.23           | 0.14                   | 1.28                       | 0.79                       |
| 3.18                           | 0.1            | 1.0             | 0.0       | 0.0                       | 66.7                | 0.62                    | 0.43                | 0.36           | 0.23                   | 2.05                       | 1.09                       |
| 3.73                           | 0.2            | 1.2             | 0.0       | 0.0                       | 56.9                | 0.73                    | 0.51                | 0.43           | 0.26                   | 2.40                       | 1.49                       |
| 4.38                           | 0.1            | 1.3             | 0.0       | 0.0                       | 48.4<br>41.0        | 0.86                    | 0.60                | 0.50           | 0.31                   | 2.82                       | 2.08                       |
| 5.97                           | 0.1            | 1.6             | 0.0       | 0.0                       | 35.5                | 1.17                    | 0.81                | 0.68           | 0.42                   | 3.85                       | 2.39                       |
| 6.97<br>8.27                   | 0.2            | 1.8             | 0.0       | 0.0                       | 30.4                | 1.37                    | 0.95                | 0.80           | 0.49                   | 4.49                       | 2.80                       |
| 8.27<br>9.97                   | 0.2            | 2.0             | 0.0       | 0.0                       | 23.6                | 1.62                    | 1.13                | 1.14           | 0.39                   | 5.55<br>6.42               | 3.52                       |
| 11.5                           | 0.2            | 2.4             | 0.0       | 0.0                       | 18.5                | 2.25                    | 1.56                | 1.32           | 0.82                   | 7.43                       | 4.59                       |
| 13.5                           | 0.2            | 2.6             | 0.0       | 0.0                       | 15.7                | 2.65                    | 1.84                | 1.54           | 0.95                   | 8.66<br>10.0               | 5.41                       |
| 18.5                           | 0.2            | 3.0             | 0.0       | 0.0                       | 11.5                | 3.63                    | 2.52                | 2.12           | 1.31                   | 11.9                       | 7.41                       |
| 21.6                           | 0.2            | 3.2             | 0.0       | 0.0                       | 9.83                | 4.24                    | 2.94                | 2.47           | 1.53                   | 13.9                       | 8.65                       |
| 30.0                           | 0.2            | 3.4             | 0.0       | 0.0                       | 7.08                | 4.96                    | 4.08                | 3.43           | 2.12                   | 16.4                       | 10.1                       |
| 37.3                           | 0.0            | 3.7             | 0.0       | 0.0                       | 5.68                | 7.31                    | 5.08                | 4.27           | 2.64                   | 24.0                       | 14.9                       |
| 46.7<br>56.9                   | 0.0            | 3.7             | 0.0       | 0.0                       | 4.54                | 9.16<br>11.2            | 6.36<br>7.78        | 5.34<br>6.51   | 3.31                   | 30.1<br>36.6               | 18.7<br>22.9               |
| 66.1                           | 0.1            | 3.8             | 0.0       | 0.0                       | 3.21                | 13.0                    | 9.03                | 7.56           | 4.68                   | 42.5                       | 26.6                       |
| 78.5                           | 0.1            | 4.0             | 0.0       | 0.0                       | 2.70                | 15.4                    | 10.7                | 8.98           | 5.56                   | 50.5                       | 31.5                       |
| 110                            | 0.2            | 4.1             | 0.0       | 0.0                       | 1.93                | 21.6                    | 12.4                | 10.4           | 7.80                   | 70.9                       | 44.1                       |
| 129                            | 0.2            | 4.4             | 0.0       | 0.0                       | 1.65                | 25.3                    | 17.6                | 14.8           | 9.16                   | 83.3                       | 51.8                       |
| 152                            | 0.2            | 4.6             | 0.0       | 0.0                       | 1.40                | 29.8                    | 20.7                | 17.4           | 10.8                   | 98.2<br>116                | 60.9<br>72.1               |
| 212                            | 0.2            | 5.0             | 0.0       | 0.0                       | 1.00                | 41.6                    | 28.9                | 24.3           | 15.0                   | 136                        | 85.0                       |
| 248                            | 0.2            | 5.2             | 0.0       | 0.0                       | 0.855               | 48.6                    | 33.8                | 28.4           | 17.6                   | 160                        | 99.4                       |
| 291<br>343                     | 0.2            | 5.4<br>5.6      | 0.0       | 0.0                       | 0.729               | 57.1<br>67.3            | 39.7<br>46.7        | 35.3<br>39.3   | 20.6                   | 221                        | 117                        |
| 402                            | 0.3            | 5.9             | 0.0       | 0.0                       | 0.527               | 78.8                    | 54.7                | 46.0           | 28.5                   | 259                        | 161                        |
| 474                            | 0.3            | 6.2             | 0.0       | 0.0                       | 0.448               | 92.9<br>109             | 64.5<br>75.7        | 54.2<br>63.4   | 33.6<br>39.2           | 305<br>356                 | 190<br>223                 |
| 648                            | 0.4            | 7.0             | 0.0       | 0.0                       | 0.327               | 127                     | 88.2                | 74.2           | 45.9                   | 417                        | 259                        |
| 760                            | 0.5            | 7.5             | 0.0       | 0.0                       | 0.279               | 149                     | 103                 | 87.0           | 53.9                   | 490                        | 303                        |
| 1049                           | 0.5            | 8.0             | 0.0       | 0.0                       | 0.239               | 206                     | 121                 | 102            | 74.3                   | 675                        | 421                        |
| 1228                           | 0.6            | 9.3             | 0.0       | 0.0                       | 0.173               | 241                     | 167                 | 141            | 87.3                   | 794                        | 491                        |
| 1439<br>1687                   | 0.7            | 10.0            | 0.0       | 0.0                       | 0.147               | 282                     | 196<br>230          | 165            | 102                    | 927<br>1082                | 576<br>676                 |
| 1828                           | 0.5            | 11.3            | 0.0       | 0.0                       | 0.116               | 358                     | 249                 | 209            | 129                    | 1173                       | 732                        |
| 2142                           | 1.1            | 12.4            | 1.2       | 1.2                       | 0.0990              | 420                     | 292                 | 245            | 152                    | 1382                       | 859                        |
| 2944                           | 2.4            | 16.2            | 2.7       | 5.5                       | 0.0720              | 577                     | 401                 | 337            | 209                    | 1900                       | 1179                       |
| 3448                           | 5.0            | 21.2            | 5.7       | 11.2                      | 0.0615              | 676                     | 469                 | 395            | 245                    | 2227                       | 1379                       |
| 4044 4734                      | 11.8           | 33.0<br>45.1    | 13.5      | 24.5                      | 0.0524              | 793<br>928              | 551<br>644          | 463            | 287                    | 2609                       | 1621                       |
| 5122                           | 3.4            | 48.5            | 3.9       | 42.0                      | 0.0414              | 1004                    | 697                 | 586            | 363                    | 3300                       | 2050                       |
| 6005                           | 6.5            | 55.1            | 7.4       | 49.4                      | 0.0353              | 1177                    | 817                 | 687            | 425                    | 3864                       | 2403                       |
| 7897                           | 4.5            | 65.6            | 5.0       | 61.2                      | 0.0268              | 1548                    | 1075                | 904            | 560                    | 5091                       | 3162                       |
| 8927                           | 4.4            | 69.9            | 4.9       | 66.1                      | 0.0237              | 1750                    | 1215                | 1022           | 633                    | 5755                       | 3574                       |
| 10465                          | 3.0            | 72.9            | 3.4       | 73.1                      | 0.0219              | 2052                    | 1425                | 1106           | 742                    | 6745                       | 4191                       |
| 12297                          | 7.8            | 83.9            | 8.8       | 81.9                      | 0.0172              | 2411                    | 1674                | 1407           | 871                    | 7918                       | 4924                       |
| 14346                          | 6.9<br>5.2     | 90.8<br>96.0    | 7.7       | 89.6<br>95.5              | 0.0148              | 2813                    | 1953                | 1642<br>1876   | 1016                   | 9236<br>10555              | 5744                       |
| 18496                          | 3.2            | 99.2            | 3.6       | 99.1                      | 0.0115              | 3627                    | 2519                | 2117           | 1311                   | 11918                      | 7409                       |
| 20495                          | 0.7            | 99.9            | 0.8       | 99.9                      | 0.0103              | 4019                    | 2791                | 2345           | 1452                   | 13200                      | 8209                       |
| 25155                          | 0.1            | 100.0           | 0.1       | 100.0                     | 0.0092              | 4540 4915               | 3413                | 2850           | 1640                   | 16145                      | 9274<br>10038              |
| 27141                          | 0.0            | 100.0           | 0.0       | 100.0                     | 0.0078              | 5322                    | 3696                | 3106           | 1923                   | 17482                      | 10871                      |
| 29379                          | 0.0            | 100.0           | 0.0       | 100.0                     | 0.0072              | 5761<br>6236            | 4001                | 3362           | 2081                   | 18918                      | 11768                      |
| 34424                          | 0.0            | 100.0           | 0.0       | 100.0                     | 0.0062              | 6750                    | 4688                | 3940           | 2439                   | 22173                      | 13788                      |
| 37194                          | 0.0            | 100.0           | 0.0       | 100.0                     | 0.0057              | 7293                    | 5065                | 4257           | 2635                   | 23955                      | 14897                      |
| 40344                          | 0.0            | 100.0           | 0.0       | 100.0                     | 0.0053              | 7911<br>8548            | 5494<br>5936        | 4617<br>4989   | 2858                   | 25982                      | 16159                      |
| 47294                          | 0.0            | 100.0           | 0.0       | 100.0                     | 0.0045              | 9273                    | 6440                | 5412           | 3350                   | 30455                      | 18941                      |
| 51169                          | 0.0            | 100.0           | 0.0       | 100.0                     | 0.0041              | 10033                   | 6967                | 5856           | 3625                   | 32955                      | 20491                      |
| 59876                          | 0.0            | 100.0           | 0.0       | 100.0                     | 0.0035              | 11740                   | 8153                | 6852           | 4242                   | 38564                      | 23979                      |



(B) Capillary Pressure Plot



#### Well Sample Depth

Tuna-1 1160.00 m



| Client       | Geoscience Vict  | toria                |                  |                 |                  |           |                                    |                         | Conversio  | n Parameters |                   |                   |
|--------------|------------------|----------------------|------------------|-----------------|------------------|-----------|------------------------------------|-------------------------|------------|--------------|-------------------|-------------------|
| Well         | Kingfish-3       |                      |                  |                 |                  |           | <b>T 1 . 71 .</b>                  |                         |            | air/water    | air/oil           | oil/water         |
| Test Method  | Air/Mercury Ca   | nillary Pressure Dra | ainage           |                 |                  |           | Laboratory Theta<br>Laboratory IFT |                         |            | 0.0          | 0.0               | 30.0<br>48.0      |
| i est method | . in mercury cu  | pinary riessure Die  | iiiiuge          |                 |                  |           | Reservoir Theta                    |                         |            | 0.0          | 21.0              | 30.0              |
| Sample       | Tuna-1           |                      |                  | Ambient Permea  | ability          |           | Reservoir IFT                      |                         |            | 50.0         |                   | 30.0              |
| Depth        | 1160.00          | m                    |                  | Ambient Porosit | у                |           | Laboratory TcosT                   | `heta                   |            | 72.0         | 24.0              | 42.0              |
|              | ส                |                      |                  |                 |                  |           | Reservoir TcosTh                   | ieta                    |            | 50.0         |                   | 26.0              |
| 0 070        | Entry Pressure ( | nsia)                | Displacement Pro | essure (nsia)   | Threshold Pressu | re (nsia) | D                                  | ensity Gradients, psi/1 | Typical    | ł            |                   |                   |
| System       | Lab              | Resv                 | Lab              | Resv            | Lab              | Resv      | Water:                             |                         | 0.440      | 1            |                   |                   |
| A-Hg         | 1520             | -                    | 2951             | -               | 3192             | -         | Oil:                               |                         | 0.330      |              |                   |                   |
| G-W          | 298.3            | 207.1                | 578.9            | 402.0           | 626.2            | 434.9     | Gas:                               |                         | 0.100      | 1            |                   |                   |
| 0-w          | 99.4             | 107.7                | 195.0            | 209.1           | 208.7            | 220.1     | 1                                  |                         |            |              |                   |                   |
|              |                  |                      |                  |                 |                  | Pore      | Equivalent                         | Injection Pressures     |            |              | Height Above Free | Height Above Free |
| Pressure     |                  | Intrusion            |                  | Saturation      |                  | Diameter  | A/B Lab                            | A/B Res                 | O/B Lab    | O/B Res      | Water (feet)      | Water (feet)      |
| (psia)       |                  | (percent)            |                  | (percent)       |                  | (µm)      |                                    |                         |            |              | Oil-Water         | Gas-Water         |
| -            |                  |                      |                  |                 |                  |           |                                    |                         |            |              |                   |                   |
| 1.01         |                  | 0.0                  |                  | 0.0             |                  | 209       | 0.20                               | 0.14                    | 0.12       | 0.07         | 0.65              | 0.40              |
| 1.99         |                  | 0.0                  |                  | 0.0             |                  | 107       | 0.39                               | 0.27                    | 0.23       | 0.14         | 1.28              | 0.80              |
| 2.74         |                  | 0.0                  |                  | 0.0             |                  | 77.4      | 0.54                               | 0.37                    | 0.31       | 0.19         | 1.76              | 1.10              |
| 3.19         |                  | 0.0                  |                  | 0.0             |                  | 66.5      | 0.63                               | 0.43                    | 0.37       | 0.23         | 2.05              | 1.28              |
| 3.74         |                  | 0.0                  |                  | 0.0             |                  | 56.7      | 0.73                               | 0.51                    | 0.43       | 0.26         | 2.41              | 1.50              |
| 5.19         |                  | 0.0                  |                  | 0.0             |                  | 40.9      | 1.02                               | 0.71                    | 0.59       | 0.37         | 3.34              | 2.08              |
| 5.98         |                  | 0.0                  |                  | 0.0             |                  | 35.4      | 1.2                                | 0.81                    | 0.68       | 0.42         | 3.85              | 2.39              |
| 6.98         |                  | 0.0                  |                  | 0.0             |                  | 30.4      | 1.4                                | 0.95                    | 0.80       | 0.49         | 4.50              | 2.80              |
| 8.28         |                  | 0.0                  |                  | 0.0             |                  | 25.6      | 1.6                                | 1.13                    | 0.95       | 0.59         | 5.33              | 3.32              |
| 9.98         |                  | 0.0                  |                  | 0.0             |                  | 21.2      | 2.0                                | 1.4                     | 1.14       | 0.71         | 6.43<br>7.41      | 4.00              |
| 13.5         |                  | 0.0                  |                  | 0.0             |                  | 15.7      | 2.6                                | 1.8                     | 1.5        | 0.96         | 8.69              | 5.41              |
| 15.5         |                  | 0.0                  |                  | 0.0             |                  | 13.7      | 3.0                                | 2.1                     | 1.8        | 1.10         | 9.98              | 6.21              |
| 18.5         |                  | 0.0                  |                  | 0.0             |                  | 11.5      | 3.6                                | 2.5                     | 2.1        | 1.3          | 11.91             | 7.41              |
| 21.6         |                  | 0.0                  |                  | 0.0             |                  | 9.83      | 4.2                                | 2.9                     | 2.5        | 1.5          | 13.91             | 8.65              |
| 30.0         |                  | 0.0                  |                  | 0.0             |                  | 7.08      | 5.9                                | 4.1                     | 3.4        | 2.1          | 19.32             | 12.01             |
| 37.9         |                  | 0.0                  |                  | 0.0             |                  | 5.60      | 7.4                                | 5.2                     | 4.3        | 2.7          | 24.41             | 15.18             |
| 46.6         |                  | 0.0                  |                  | 0.0             |                  | 4.55      | 9.1                                | 6.3                     | 5.3        | 3.3          | 30.01             | 18.66             |
| 57.6         |                  | 0.0                  |                  | 0.0             |                  | 3.68      | 11.3                               | 7.8                     | 6.6        | 4.1          | 37.10             | 23.07             |
| 77.9         |                  | 0.0                  |                  | 0.0             |                  | 2.72      | 15                                 | 9.2                     | 89         | 4.8          | 43.28             | 31.20             |
| 92.1         |                  | 0.0                  |                  | 0.0             |                  | 2.30      | 18                                 | 13                      | 10.5       | 6.5          | 59.32             | 36.88             |
| 110          |                  | 0.0                  |                  | 0.0             |                  | 1.94      | 22                                 | 15                      | 13         | 7.8          | 70.84             | 44.05             |
| 128          |                  | 0.0                  |                  | 0.0             |                  | 1.65      | 25                                 | 17                      | 15         | 9.1          | 82.44             | 51.26             |
| 178          |                  | 0.0                  |                  | 0.0             |                  | 1.19      | 35                                 | 24                      | 20         | 13           | 114.64            | 71.29             |
| 210          |                  | 0.0                  |                  | 0.0             |                  | 1.01      | 41                                 | 29                      | 24         | 15           | 135.2             | 84.10             |
| 246          |                  | 0.0                  |                  | 0.0             |                  | 0.862     | 48                                 | 33                      | 28         | 17           | 158.4             | 98.52             |
| 290          |                  | 0.0                  |                  | 0.0             |                  | 0.731     | 57                                 | 39                      | 33         | 21           | 186.8             | 116.14            |
| 401          |                  | 0.0                  |                  | 0.0             |                  | 0.529     | 87<br>79                           | 47                      | 39<br>46   | 24           | 220.9             | 160.6             |
| 472          |                  | 0.0                  |                  | 0.0             |                  | 0.449     | 93                                 | 64                      | 54         | 33           | 304.0             | 189.0             |
| 554          |                  | 0.0                  |                  | 0.0             |                  | 0.383     | 109                                | 75                      | 63         | 39           | 356.8             | 221.9             |
| 648          |                  | 0.0                  |                  | 0.0             |                  | 0.327     | 127                                | 88                      | 74         | 46           | 417.3             | 259.5             |
| 887          |                  | 0.0                  |                  | 0.0             |                  | 0.239     | 148                                | 103                     | 102        | 63           | 571.3             | 355.2             |
| 1048         |                  | 0.0                  |                  | 0.0             |                  | 0.202     | 205                                | 143                     | 120        | 74           | 675.0             | 419.7             |
| 1227         |                  | 0.0                  |                  | 0.0             |                  | 0.173     | 241                                | 167                     | 140        | 87           | 790.2             | 491.4             |
| 1438         |                  | 0.0                  |                  | 0.0             |                  | 0.147     | 282                                | 230                     | 165        | 102          | 926.1             | 575.9             |
| 1828         |                  | 0.8                  |                  | 0.5             |                  | 0.116     | 358                                | 249                     | 209        | 130          | 1177              | 732.1             |
| 2143         |                  | 1.5                  |                  | 2.1             |                  | 0.0989    | 420                                | 292                     | 245        | 152          | 1380              | 858.2             |
| 2509         |                  | 2.5                  |                  | 4.6             |                  | 0.0845    | 492                                | 342                     | 287        | 178          | 1616              | 1004.8            |
| 3448         |                  | 4.2<br>9.6           |                  | 0.0<br>18.4     |                  | 0.0720    | 676                                | 469                     | 395        | 209          | 2221              | 1381              |
| 4042         |                  | 16.9                 |                  | 35.2            |                  | 0.0524    | 793                                | 550                     | 463        | 286          | 2603              | 1619              |
| 4730         |                  | 18.6                 |                  | 53.9            |                  | 0.0448    | 927                                | 644                     | 541        | 335          | 3046              | 1894              |
| 5115         |                  | 14.2                 |                  | 64.1<br>71.9    |                  | 0.0414    | 1003                               | 696<br>817              | 585<br>687 | 362          | 3294              | 2048              |
| 7032         |                  | 5.6                  |                  | 77.5            |                  | 0.0301    | 1379                               | 958                     | 805        | 498          | 4529              | 2816              |
| 7896         |                  | 2.9                  |                  | 80.4            |                  | 0.0268    | 1548                               | 1075                    | 904        | 559          | 5085              | 3162              |
| 8926         |                  | 3.1                  |                  | 83.4            |                  | 0.0238    | 1750                               | 1215                    | 1022       | 632          | 5749              | 3575              |
| 9662         |                  | 1.7                  |                  | 85.1            |                  | 0.0219    | 1895                               | 1316                    | 1106       | 685          | 6223              | 3870              |
| 12296        |                  | 2.8                  |                  | 89.7            |                  | 0.0172    | 2411                               | 1674                    | 1407       | 871          | 7919              | 4924              |
| 14345        |                  | 2.3                  |                  | 92.0            |                  | 0.0148    | 2813                               | 1953                    | 1642       | 1016         | 9239              | 5745              |
| 16397        |                  | 1.5                  |                  | 93.5            |                  | 0.0129    | 3215                               | 2233                    | 1876       | 1162         | 10560             | 6567              |
| 18493        |                  | 1.4                  |                  | 95.0            |                  | 0.0115    | 3626                               | 2518                    | 2116       | 1310         | 11910             | 7406              |
| 23151        |                  | 0.6                  |                  | 97.0            |                  | 0.0103    | 4539                               | 3152                    | 2649       | 1640         | 14910             | 9272              |
| 25068        |                  | 1.0                  |                  | 98.0            |                  | 0.0085    | 4915                               | 3413                    | 2869       | 1776         | 16145             | 10039             |
| 27135        |                  | 0.2                  |                  | 98.3            |                  | 0.0078    | 5321                               | 3695                    | 3105       | 1922         | 17476             | 10867             |
| 29379        |                  | 0.4                  |                  | 98.7            |                  | 0.0072    | 5761                               | 4000                    | 3362       | 2081         | 18921             | 11/66             |
| 34428        |                  | 0.3                  |                  | 99.4            |                  | 0.0062    | 6751                               | 4688                    | 3940       | 2439         | 22173             | 13788             |
| 37197        |                  | 0.1                  |                  | 99.5            |                  | 0.0057    | 7294                               | 5065                    | 4257       | 2635         | 23956             | 14897             |
| 40346        |                  | 0.1                  |                  | 99.6            |                  | 0.0053    | 7911                               | 5494                    | 4617       | 2858         | 25985             | 16158             |
| 43595        |                  | 0.1                  |                  | 99.8            |                  | 0.0049    | 8548                               | 5936<br>6440            | 4989       | 3088         | 28077             | 17459             |
| 51173        |                  | 0.0                  |                  | 99.8<br>99.9    |                  | 0.0045    | 10034                              | 6968                    | 5856       | 3625         | 32958             | 20494             |
| 55386        |                  | 0.0                  |                  | 99.9            |                  | 0.0038    | 10860                              | 7542                    | 6338       | 3924         | 35671             | 22181             |
| 59891        |                  | 0.1                  |                  | 100.0           |                  | 0.0035    | 11743                              | 8155                    | 6854       | 4243         | 38572             | 23986             |



(B) Capillary Pressure Plot



(C) Pore Size Distribution plot



#### Well Sample Depth

Woodside South-1 522.12 m



| Client           | Gaasajanaa Viatoria   |               |                 |                 |                  |           | 1                |                         | Conversio | n Paramators |                   |                   |
|------------------|-----------------------|---------------|-----------------|-----------------|------------------|-----------|------------------|-------------------------|-----------|--------------|-------------------|-------------------|
| Well             | Woodside South -1     |               |                 |                 |                  |           |                  |                         | Conversio | air/water    | air/oil           | oil/water         |
| wen              | woodside bould 1      |               |                 |                 |                  |           | Laboratory Theta |                         |           | 0.0          | 0.0               | 30.0              |
| Test Method      | Air/Mercury Canillary | Pressure Dr   | ainage          |                 |                  |           | Laboratory IFT   |                         |           | 72.0         | 24.0              | 48.0              |
| rest sitetiidu   | , in mercury cupinary | r ressure isn | annuge          |                 |                  |           | Reservoir Theta  |                         |           | 0.0          |                   | 30.0              |
| Sample           | Woodside South -1     |               |                 | Ambient Permea  | ability          |           | Reservoir IFT    |                         |           | 50.0         |                   | 30.0              |
| Depth            | 522.12 m              |               |                 | Ambient Porosit | v                |           | Laboratory Tcos  | 'heta                   |           | 72.0         | 24.0              | 42.0              |
|                  |                       |               |                 |                 | ~                |           | Reservoir TcosTl | ieta                    |           | 50.0         |                   | 26.0              |
| pore radius (um) | )                     |               |                 |                 |                  |           | D                | ensity Gradients, psi/f | ìoot      |              |                   |                   |
| 4.000            | Entry Pressure (psia) |               | Displacement Pr | ressure (psia)  | Threshold Pressu | re (psia) |                  |                         | Typical   |              |                   |                   |
| System           | Lab                   | Resv          | Lab             | Resv            | Lab              | Resv      | Water:           |                         | 0.440     | 1            |                   |                   |
| A-Hg             | 26.6                  | -             | 46.1            | -               | 65.8             | -         | Oil:             |                         | 0.330     |              |                   |                   |
| G-W              | 5.2                   | 3.6           | 9.0             | 6.3             | 12.9             | 9.0       | Gas:             |                         | 0.100     |              |                   |                   |
| O-W              | 1.7                   | 1.9           | 3.0             | 3.3             | 4.3              | 4.7       |                  |                         |           |              |                   |                   |
|                  |                       |               |                 |                 |                  |           |                  |                         |           |              |                   |                   |
|                  |                       |               |                 |                 |                  | Pore      | Equivalent       | Injection Pressures     |           |              | Height Above Free | Height Above Free |
| Pressure         | 1                     | Intrusion     |                 | Saturation      |                  | Diameter  | A/B Lab          | A/B Res                 | O/B Lab   | O/B Res      | Water (feet)      | Water (feet)      |
| (psia)           | (                     | (percent)     |                 | (percent)       |                  | (µm)      |                  |                         |           |              | Oil-Water         | Gas-Water         |
|                  |                       | a ,           |                 | u ,             |                  |           |                  |                         |           |              |                   |                   |
|                  |                       |               |                 |                 |                  |           |                  |                         |           |              |                   |                   |
| 1.01             |                       | 0.0           |                 | 0.0             |                  | 209       | 0.20             | 0.14                    | 0.12      | 0.07         | 0.65              | 0.40              |
| 1.99             |                       | 0.0           |                 | 0.0             |                  | 107       | 0.39             | 0.27                    | 0.23      | 0.14         | 1.28              | 0.80              |
| 2.74             |                       | 0.0           |                 | 0.0             |                  | 77.4      | 0.54             | 0.37                    | 0.31      | 0.19         | 1.76              | 1.10              |
| 3.19             |                       | 0.0           |                 | 0.0             |                  | 66.5      | 0.63             | 0.43                    | 0.37      | 0.23         | 2.05              | 1.28              |
| 3.74             |                       | 0.0           |                 | 0.0             |                  | 56.7      | 0.73             | 0.51                    | 0.43      | 0.26         | 2.41              | 1.50              |
| 4.38             |                       | 0.0           |                 | 0.0             |                  | 48.4      | 0.86             | 0.60                    | 0.50      | 0.31         | 2.82              | 1.75              |
| 5.19             |                       | 0.0           |                 | 0.0             |                  | 40.9      | 1.02             | 0.71                    | 0.59      | 0.37         | 3.34              | 2.08              |
| 5.98             |                       | 0.0           |                 | 0.0             |                  | 35.4      | 1.2              | 0.81                    | 0.68      | 0.42         | 3.85              | 2.39              |
| 6.98             |                       | 0.0           |                 | 0.0             |                  | 30.4      | 1.4              | 0.95                    | 0.80      | 0.49         | 4.50              | 2.80              |
| 8.28             |                       | 0.0           |                 | 0.0             |                  | 25.6      | 1.6              | 1.13                    | 0.95      | 0.59         | 5.33              | 3.32              |
| 9.98             |                       | 0.0           |                 | 0.0             |                  | 21.2      | 2.0              | 1.4                     | 1.14      | 0.71         | 6.43              | 4.00              |
| 11.5             |                       | 0.0           |                 | 0.0             |                  | 18.5      | 2.3              | 1.6                     | 1.3       | 0.81         | 7.41              | 4.61              |
| 13.5             |                       | 0.0           |                 | 0.0             |                  | 15.7      | 2.6              | 1.8                     | 1.5       | 0.96         | 8.69              | 5.41              |
| 15.5             |                       | 0.0           |                 | 0.0             |                  | 13.7      | 3.0              | 2.1                     | 1.8       | 1.10         | 9.98              | 6.21              |
| 18.5             |                       | 0.0           |                 | 0.0             |                  | 11.5      | 3.6              | 2.5                     | 2.1       | 1.3          | 11.91             | 7.41              |
| 21.6             |                       | 0.0           |                 | 0.0             |                  | 9.83      | 4.2              | 2.9                     | 2.5       | 1.5          | 13.91             | 8.65              |
| 25.3             |                       | 0.0           |                 | 0.0             |                  | 8.39      | 5.0              | 3.4                     | 2.9       | 1.8          | 16.29             | 10.13             |
| 30.0             |                       | 0.9           |                 | 0.9             |                  | 7.08      | 5.9              | 4.1                     | 3.4       | 2.1          | 19.32             | 12.01             |
| 38.8             |                       | 1.7           |                 | 2.6             |                  | 5.46      | 7.6              | 5.3                     | 4.4       | 2.7          | 24.99             | 15.54             |
| 48.4             |                       | 2.1           |                 | 4.8             |                  | 4.38      | 9.5              | 6.6                     | 5.5       | 3.4          | 31.17             | 19.38             |
| 56.9             |                       | 3.1           |                 | 7.9             |                  | 3.73      | 11.2             | 7.7                     | 6.5       | 4.0          | 36.65             | 22.79             |
| 68.4             |                       | 3.7           |                 | 11.6            |                  | 3.10      | 13               | 9.3                     | 7.8       | 4.8          | 44.05             | 27.39             |
| 79.8             |                       | 3.8           |                 | 15.4            |                  | 2.66      | 16               | 10.9                    | 9.1       | 5.7          | 51.39             | 31.96             |
| 93.9             |                       | 4.8           |                 | 20.2            |                  | 2.26      | 18               | 13                      | 10.7      | 6.7          | 60.48             | 37.61             |
| 108              |                       | 4.3           |                 | 24.5            |                  | 1.97      | 21               | 15                      | 12        | 7.7          | 69.56             | 43.25             |
| 127              |                       | 4.8           |                 | 29.3            |                  | 1.67      | 25               | 17                      | 15        | 9.0          | 81.79             | 50.86             |
| 152              |                       | 5.5           |                 | 34.7            |                  | 1.39      | 30               | 21                      | 17        | 10.8         | 97.89             | 60.87             |
| 180              |                       | 4.6           |                 | 39.4            |                  | 1.18      | 35               | 25                      | 21        | 13           | 115.93            | 72.09             |
| 209              |                       | 4.3           |                 | 43.7            |                  | 1.01      | 41               | 28                      | 24        | 15           | 134.6             | 83.70             |
| 245              |                       | 4.3           |                 | 48.0            |                  | 0.865     | 48               | 33                      | 28        | 17           | 157.8             | 98.12             |
| 290              |                       | 4.5           |                 | 52.5            |                  | 0.732     | 57               | 39                      | 33        | 21           | 180.8             | 110.14            |
| 400              |                       | 4.2           |                 | 50.0            |                  | 0.531     | 78               | 40<br>54                | 16        | 24           | 219.0             | 160.2             |
| 400              |                       | 4.0           |                 | 64.7            |                  | 0.451     | 92               | 64                      | 54        | 33           | 302.7             | 188.2             |
| 553              |                       | 3.9           |                 | 68.5            |                  | 0.383     | 108              | 75                      | 63        | 39           | 356.2             | 221.5             |
| 645              |                       | 3.4           |                 | 71.9            |                  | 0.329     | 126              | 88                      | 74        | 46           | 415.4             | 258.3             |
| 757              |                       | 3.2           |                 | 75.2            |                  | 0.280     | 148              | 103                     | 87        | 54           | 487.5             | 303.2             |
| 885              |                       | 2.9           |                 | 78.1            |                  | 0.240     | 174              | 121                     | 101       | 63           | 570.0             | 354.4             |
| 1045             |                       | 2.7           |                 | 80.8            |                  | 0.203     | 205              | 142                     | 120       | 74           | 673.0             | 418.5             |
| 1227             |                       | 2.4           |                 | 83.2            |                  | 0.173     | 241              | 167                     | 140       | 87           | 790.2             | 491.4             |
| 1435             |                       | 2.1           |                 | 85.3            |                  | 0.148     | 281              | 195                     | 164       | 102          | 924.2             | 574.7             |
| 1684             |                       | 1.9           |                 | 87.2            |                  | 0.126     | 330              | 229                     | 193       | 119          | 1084.6            | 674.4             |
| 1826             |                       | 1.7           |                 | 88.1            |                  | 0.116     | 358              | 249                     | 209       | 129          | 1176              | 731.3             |
| 2144             |                       | 1.7           |                 | 89.8            |                  | 0.0989    | 420              | 292                     | 245       | 152          | 1381              | 858.6             |
| 2508             |                       | 1.3           |                 | 91.1            |                  | 0.0845    | 492              | 342                     | 287       | 178          | 1615              | 1004.4            |
| 2941             |                       | 1.0           |                 | 92.1            |                  | 0.0721    | 577              | 400                     | 337       | 208          | 1894              | 1178              |
| 3445             |                       | 1.1           |                 | 93.2            |                  | 0.0615    | 675              | 469                     | 394       | 244          | 2219              | 1380              |
| 4038             |                       | 1.1           |                 | 94.3            |                  | 0.0525    | 792              | 550                     | 462       | 286          | 2601              | 1617              |
| 4732             |                       | 1.4           |                 | 95.7            |                  | 0.0448    | 928              | 644                     | 542       | 335          | 3048              | 1895              |
| 5117             |                       | 1.0           |                 | 96.2            |                  | 0.0414    | 1003             | 697                     | 586       | 363          | 3296              | 2049              |
| 5997             |                       | 0.8           |                 | 97.1            |                  | 0.0354    | 1176             | 817                     | 686       | 425          | 3862              | 2402              |
| 7026             |                       | 0.9           |                 | 97.9            |                  | 0.0302    | 13/8             | 957                     | 804       | 498          | 4525              | 2814              |
| 7883             |                       | 0.6           |                 | 98.5            |                  | 0.0269    | 1546             | 1073                    | 902       | 558          | 50//              | 3157              |
| 8913             |                       | 0.5           |                 | 99.0            |                  | 0.0238    | 1/48             | 1214                    | 1020      | 631          | 5/40              | 3570              |
| 9649             |                       | 0.2           |                 | 99.3            |                  | 0.0220    | 1892             | 1314                    | 1104      | 684          | 6214              | 3864              |
| 10451            |                       | 0.2           |                 | 99.4            |                  | 0.0203    | 2049             | 1423                    | 1196      | /40          | 6/31              | 4185              |
| 12284            |                       | 0.5           |                 | 99.8            |                  | 0.01/3    | 2409             | 10/3                    | 1400      | 870          | /911              | 4920              |
| 14330            |                       | 0.2           |                 | 99.9            |                  | 0.0148    | 2810             | 1951                    | 1640      | 1015         | 9229              | 5/39              |
| 10383            |                       | 0.1           |                 | 100.0           |                  | 0.0129    | 3213             | 2231                    | 10/3      | 1101         | 10003             | 7401              |
| 164/9            |                       | 0.0           |                 | 100.0           |                  | 0.0115    | 3023             | 2010                    | 2115      | 1309         | 11901             | /401              |
| 20464            |                       | 0.0           |                 | 100.0           |                  | 0.0103    | 4010             | 2/09                    | 2344      | 1431         | 13193             | 0204              |
| 23140            |                       | 0.0           |                 | 100.0           |                  | 0.0092    | 4015             | 3132                    | 2049      | 1040         | 14908             | 10029             |
| 23003            |                       | 0.0           |                 | 100.0           |                  | 0.0085    | 4913             | 3413                    | 2000      | 1022         | 10145             | 10058             |
| 2/130            |                       | 0.0           |                 | 100.0           |                  | 0.0078    | 5740             | 4000                    | 3363      | 1922         | 1/4//             | 11766             |
| 27378            |                       | 0.0           |                 | 100.0           |                  | 0.00/2    | 6726             | 4000                    | 3640      | 2001         | 204921            | 12727             |
| 31004            |                       | 0.0           |                 | 100.0           |                  | 0.0067    | 6750             | 4331                    | 3040      | 2233         | 20463             | 12/3/             |
| 34423            |                       | 0.0           |                 | 100.0           |                  | 0.0062    | 7202             | +08/                    | 1257      | 2439         | 22170             | 1/806             |
| 40242            |                       | 0.0           |                 | 100.0           |                  | 0.0057    | 7010             | 5402                    | 4617      | 2000         | 25955             | 16157             |
| 40343            |                       | 0.0           |                 | 100.0           |                  | 0.0055    | 910              | 5026                    | 401/      | 2020         | 23983             | 17/59             |
| 43393            |                       | 0.0           |                 | 100.0           |                  | 0.0049    | 0.040            | 5950<br>6//0            | 4709      | 3351         | 20070             | 1/438             |
| 51171            |                       | 0.0           |                 | 100.0           |                  | 0.0043    | 10034            | 6068                    | 5856      | 3625         | 32056             | 20/03             |
| 55385            |                       | 0.0           |                 | 100.0           |                  | 0.0041    | 10054            | 7542                    | 6338      | 3023         | 32930             | 20493             |
| 50990            |                       | 0.0           |                 | 100.0           |                  | 0.0038    | 11741            | 9154                    | 6952      | 3724<br>4242 | 29565             | 22101             |



(B) Capillary Pressure Plot



(C) Pore Size Distribution plot

| Well<br>Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Woound<br>389.3 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ellah-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Client<br>Well<br>Test Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Geoscience '<br>Wooundellal<br>Air/Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Victoria<br>h-10<br>Capillary Pressu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ıre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Density O<br>Water:<br>Oil:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Typical<br>0.440<br>0.330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Laboratory Thet<br>Laboratory IFT                                                                                                                                                                                                                                                                                                                                                                                                  | Conv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | air/water<br>0.0<br>72.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ers (dynes/cm)<br>air/oil<br>0.0<br>24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | oil/water<br>30.0<br>48.0                                                                                                                                                                                                                                                                                                                                                                                             | CO <sub>2</sub> /water<br>0.0<br>72.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sample<br>Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | W10<br>389.30 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Gas:<br>CO <sub>2</sub> Density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Reservoir Theta<br>Reservoir IFT<br>Laboratory Tcos<br>Reservoir TcosT                                                                                                                                                                                                                                                                                                                                                             | Theta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0<br>50.0<br>72.0<br>50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30.0<br>30.0<br>42.0<br>26.0                                                                                                                                                                                                                                                                                                                                                                                          | 0.0<br>26.0<br>72.0<br>26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Pore radius (µ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | System<br>A-Hg<br>G-W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Estimated Column<br>Height (feet)<br>na<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Entry P<br>Lab<br>39.5<br>7.74                                                                                                                                                                                                                                                                                                                                                                                                     | ressure (psia)<br>Res Con<br>-<br>5.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Displacement F<br>Lab<br>41.1<br>8.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Resv<br>-<br>5.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Threshold P<br>Lab<br>42.9<br>8.42                                                                                                                                                                                                                                                                                                                                                                                    | ressure (psia)<br>Resv<br>-<br>5.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | O-W<br>CO <sub>2</sub> -W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.58<br>7.74                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.80<br>2.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.68<br>8.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.91<br>2.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.81<br>8.42                                                                                                                                                                                                                                                                                                                                                                                                          | 3.04<br>3.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Pressure<br>(psia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Raw<br>Intrusion<br>(percent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Saturation<br>(percent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Conform<br>Intrusion<br>(percent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ance Corrected<br>Saturation<br>(percent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pore<br>Diameter<br>(µm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Equivalent<br>Air/Brine<br>Lab<br>(psi)                                                                                                                                                                                                                                                                                                                                                                                            | Injection Pressures<br>Air/Brine<br>Res Con<br>(psi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Oil/Brine<br>Lab<br>Conditions<br>(psi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oil/Brine<br>Reservoir<br>Conditions<br>(psi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Height Above<br>Free Water<br>Oil-Water<br>(feet)                                                                                                                                                                                                                                                                                                                                                                     | Height Above<br>Free Water<br>Gas-Water<br>(feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Pressure<br>(psia)           1.00           1.98           2.73           3.18           3.73           4.38           5.18           5.73           4.38           5.18           5.98           6.97           8.27           9.97           11.5           13.5           15.5           18.5           21.6           25.3           30.0           36.8           46.3           55.4           65.4           677           127           150           179           208           244           289           342           400           471           552           1436           1686           1826           2141           2509           2944           3448           4045           4732           5116 | Indusion<br>(percent)           0.0           1.8           1.9           0.5           0.4           0.5           0.4           0.5           0.4           0.5           0.4           0.5           0.4           0.6           0.5           0.4           0.6           0.5           0.4           0.6           0.5           0.9           0.8           1.5           2.0           2.0           0.0           0.1           0.0           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1 | 0.0           1.8           3.8           4.3           4.7           5.1           5.6           6.1           6.5           7.0           7.6           8.2           9.0           9.8           11.3           13.3           16.2           31.8           78.6           98.8           98.9           99.0           99.1           99.1           99.1           99.1           99.1           99.1           99.2           99.3           99.4           99.5           99.6           99.7           99.8           99.9           100.0           100.0           100.0           100.0           100.0           100.0           100.0           100.0           100.0           100.0           100.0           100.0           100.0           100.0 | 0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.0 | Saturation           (percent)           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           99.0           99.1           99.2           99.3           99.4           99.5           99.6           99.7           99.8           99.9           100.0           100.0 | 212<br>107<br>77.7<br>66.7<br>56.8<br>48.4<br>41.0<br>35.5<br>30.4<br>25.6<br>21.3<br>18.5<br>15.7<br>13.7<br>11.5<br>9.83<br>8.39<br>7.08<br>5.76<br>4.58<br>3.83<br>3.24<br>2.75<br>2.35<br>1.95<br>1.66<br>1.41<br>1.19<br>1.02<br>0.869<br>0.735<br>0.620<br>0.530<br>0.450<br>0.328<br>0.280<br>0.280<br>0.289<br>0.239<br>0.239<br>0.239<br>0.239<br>0.239<br>0.239<br>0.239<br>0.239<br>0.239<br>0.239<br>0.239<br>0.239<br>0.239<br>0.239<br>0.239<br>0.239<br>0.239<br>0.244<br>0.0444<br>0.0444<br>0.0444 | Lab<br>(psi)<br>0.20<br>0.39<br>0.54<br>0.62<br>0.73<br>0.86<br>1.02<br>1.17<br>1.37<br>1.62<br>1.95<br>2.25<br>2.65<br>3.04<br>3.63<br>4.24<br>4.96<br>5.88<br>7.22<br>9.08<br>10.9<br>12.8<br>15.1<br>17.7<br>21.4<br>24.9<br>29.4<br>3.5.1<br>40.8<br>15.7<br>67.1<br>78.4<br>92.4<br>108<br>127<br>148<br>177<br>148<br>177<br>177<br>187<br>195<br>240<br>282<br>331<br>358<br>420<br>492<br>577<br>676<br>793<br>928<br>1003 | Res Con         (psi)           0.14         0.27           0.37         0.43           0.51         0.60           0.71         0.81           0.95         1.13           1.35         1.56           1.84         2.11           2.52         2.94           3.44         4.08           5.01         6.31           7.57         8.89           10.5         12.3           14.9         17.3           20.4         24.4           28.3         33.2           39.4         46.6           54.4         64.2           75.0         88.2           103         121           142         167           196         230           249         292           342         401           469         551           644         697 | 0.11         0.23           0.31         0.36           0.33         0.33           0.36         0.43           0.37         0.59           0.68         0.80           0.95         1.14           1.32         1.54           1.77         2.12           2.47         2.90           3.43         4.21           5.30         6.34           7.48         8.82           10.3         12.5           14.5         17.2           20.5         23.8           27.9         33.1           39.1         45.8           45.8         53.9           63.2         74.0           74.0         86.5           101         120           140         164           193         209           245         287           337         395           463         542 | 0.07         0.14           0.19         0.23           0.26         0.31           0.37         0.42           0.49         0.59           0.71         0.82           0.895         1.10           1.31         1.53           1.80         2.12           2.61         3.28           3.92         4.63           5.46         6.38           7.74         8.98           8.06         12.7           14.7         17.3           20.5         24.2           28.4         33.4           39.1         45.8           5.35         62.5           74.3         86.7           102         119           129         152           178         209           245         287           336         362 | 0.1-water<br>(feet)<br>0.64<br>1.28<br>1.75<br>2.05<br>2.40<br>2.82<br>3.34<br>3.85<br>4.49<br>5.33<br>6.42<br>7.43<br>8.66<br>10.0<br>11.9<br>13.9<br>16.4<br>19.3<br>23.7<br>29.8<br>35.6<br>42.1<br>49.6<br>58.0<br>70.4<br>81.6<br>96.4<br>115<br>134<br>157<br>186<br>220<br>258<br>304<br>355<br>416<br>486<br>558<br>675<br>788<br>927<br>1082<br>2173<br>1382<br>1618<br>1900<br>2227<br>2609<br>3055<br>3291 | 0.40         0.79           1.09         1.09           1.27         1.49           1.76         2.08           2.39         2.80           3.32         3.97           4.59         5.41           6.211         7.41           7.45         10.1           1.2.0         14.7           1.8.6         22.3           2.6.1         30.9           36.2         43.8           50.9         60.0           71.8         83.2           97.6         116           137         160           189         221           259         303           356         418           491         576           676         732           859         1006           1179         1379           1621         179           1379         1621 |
| 5999<br>7023<br>7887<br>8917<br>9650<br>10453<br>12286<br>14336<br>16385<br>18482<br>20486<br>23152<br>25067<br>27137<br>29381<br>31804<br>34424<br>37195<br>40343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0353<br>0.0302<br>0.0269<br>0.0238<br>0.0220<br>0.0203<br>0.0173<br>0.0148<br>0.0129<br>0.0115<br>0.0103<br>0.0092<br>0.0085<br>0.0072<br>0.0067<br>0.0067<br>0.0067<br>0.0053                                                                                                                                                                                                                                                                                                                                    | 1176<br>1377<br>1546<br>1748<br>1892<br>2050<br>2409<br>2811<br>3213<br>3624<br>4017<br>4540<br>4915<br>5321<br>5761<br>6236<br>6750<br>7293<br>7910                                                                                                                                                                                                                                                                               | 81/<br>956<br>1074<br>1214<br>1314<br>1424<br>1673<br>1952<br>2231<br>2517<br>2790<br>3153<br>3413<br>3695<br>4001<br>4331<br>4688<br>5065<br>5493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 687<br>804<br>903<br>1020<br>1104<br>1196<br>1406<br>1641<br>1875<br>2115<br>2344<br>2650<br>2869<br>3106<br>3362<br>3640<br>3362<br>3640<br>3940<br>4257<br>4617                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 425<br>498<br>559<br>631<br>683<br>740<br>870<br>1016<br>1161<br>1309<br>1451<br>1640<br>1776<br>1923<br>2081<br>2253<br>2439<br>2635<br>2858                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3884<br>4527<br>5082<br>5736<br>6209<br>6727<br>7909<br>9236<br>10555<br>11900<br>13191<br>14909<br>16145<br>17482<br>18918<br>20482<br>22173<br>23955<br>25982                                                                                                                                                                                                                                                       | 2403<br>2812<br>3159<br>3571<br>3865<br>4188<br>4921<br>5741<br>6562<br>7403<br>8206<br>9274<br>10038<br>10868<br>11768<br>11768<br>11768<br>12738<br>13788<br>14897<br>16156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 43593<br>47293<br>51175<br>55389<br>59883                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100.0<br>100.0<br>100.0<br>100.0<br>100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100.0<br>100.0<br>100.0<br>100.0<br>100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0049<br>0.0045<br>0.0041<br>0.0038<br>0.0035                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8548<br>9273<br>10034<br>10861<br>11742                                                                                                                                                                                                                                                                                                                                                                                            | 5936<br>6440<br>6968<br>7542<br>8154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4989<br>5412<br>5857<br>6339<br>6853                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3088<br>3350<br>3626<br>3924<br>4242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28073<br>30455<br>32964<br>35673<br>38564                                                                                                                                                                                                                                                                                                                                                                             | 17459<br>18941<br>20494<br>22182<br>23982                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

## 55389 0.0 100.0 0.0 100.0 59883 0.0 100.0 0.0 100.0 (A) Interpreted Capillary Pressure Chart



(B) Capillary Pressure Plot



(C) Pore Size Distribution plot

ACS LABORATORIES

BORATOR

| Well<br>Sample  | Depth        |                      | V<br>3                | Vooundel<br>89 m             | lah-11                            |                                |                                             |                                |                                      |                                         |                                         |
|-----------------|--------------|----------------------|-----------------------|------------------------------|-----------------------------------|--------------------------------|---------------------------------------------|--------------------------------|--------------------------------------|-----------------------------------------|-----------------------------------------|
| Client          | Geoscience A | A Victoria           |                       | Density G                    | radients (psi/foot)               |                                | Con                                         | version Paramet                | ters (dynes/cm)                      | -                                       | -                                       |
| Well            | Wooundellal  | n-11                 |                       | Watar                        | Typical                           | Laboratory Tha                 | to                                          | air/water                      | air/oil                              | oil/water                               | CO <sub>2</sub> /water                  |
| Test Method     | Air/Mercury  | Capillary Press      | ure                   | Oil:                         | 0.330                             | Laboratory IFT                 | la                                          | 72.0                           | 24.0                                 | 48.0                                    | 72.0                                    |
| Cl.             | 3711         |                      |                       | Gas:                         | 0.100                             | Reservoir Theta                | L                                           | 0.0                            |                                      | 30.0                                    | 0.0                                     |
| Sample<br>Depth | 389.00 m     |                      |                       | CO2 Density                  | 0.081                             | Laboratory Tco:                | sTheta                                      | 72.0                           | 24.0                                 | 42.0                                    | 72.0                                    |
|                 |              |                      |                       |                              |                                   | Reservoir Tcos                 | Theta                                       | 50.0                           |                                      | 26.0                                    | 26.0                                    |
| Pore radius (u  | m)           | 1 69                 |                       | System                       | Estimated Column<br>Height (feet) | Entry I<br>Lab                 | Pressure (psia)<br>Res Con                  | Displacement I                 | Pressure (psia)<br>Resv              | Threshold P<br>Lab                      | ressure (psia)<br>Resv                  |
|                 | )            |                      |                       | A-Hg                         | na                                | 62.9                           | -                                           | 89.7                           | -                                    | 112                                     | -                                       |
|                 |              |                      |                       | G-W<br>O-W                   | 25                                | 12.3                           | 8.57<br>4.46                                | 17.6                           | 6.35                                 | 21.9                                    | 15.2                                    |
|                 |              |                      |                       | CO <sub>2</sub> -W           | 11                                | 12.3                           | 4.46                                        | 17.6                           | 6.35                                 | 21.9                                    | 7.90                                    |
| Pressure        | Raw          | / Data<br>Saturation | Conforma<br>Intrusion | ance Corrected<br>Saturation | Pore<br>Diameter                  | Equivalent<br>Air/Brine<br>Lab | Injection Pressures<br>Air/Brine<br>Res Con | Oil/Brine<br>Lab<br>Conditions | Oil/Brine<br>Reservoir<br>Conditions | Height Above<br>Free Water<br>Oil-Water | Height Above<br>Free Water<br>Gas-Water |
| (psia)          | (percent)    | (percent)            | (percent)             | (percent)                    | (µm)                              | (psi)                          | (psi)                                       | (psi)                          | (psi)                                | (feet)                                  | (feet)                                  |
| 1.00            | 0.0          | 0.0                  | 0.0                   | 0.0                          | 211                               | 0.20                           | 0.14                                        | 0.11                           | 0.07                                 | 0.64                                    | 0.40                                    |
| 2.73            | 0.0          | 0.0                  | 0.0                   | 0.0                          | 77.6                              | 0.54                           | 0.37                                        | 0.25                           | 0.19                                 | 1.20                                    | 1.09                                    |
| 3.18            | 0.0          | 0.0                  | 0.0                   | 0.0                          | 66.7                              | 0.62                           | 0.43                                        | 0.36                           | 0.23                                 | 2.05                                    | 1.27                                    |
| 3.73<br>4.38    | 0.0          | 0.0                  | 0.0                   | 0.0                          | 56.9<br>48.4                      | 0.73                           | 0.51                                        | 0.43                           | 0.26                                 | 2.40 2.82                               | 1.49                                    |
| 5.18            | 0.0          | 0.0                  | 0.0                   | 0.0                          | 41.0                              | 1.02                           | 0.71                                        | 0.59                           | 0.37                                 | 3.34                                    | 2.08                                    |
| 5.98            | 0.0          | 0.0                  | 0.0                   | 0.0                          | 35.5                              | 1.17                           | 0.81                                        | 0.68                           | 0.42                                 | 3.85                                    | 2.39                                    |
| 8.27            | 0.0          | 0.0                  | 0.0                   | 0.0                          | 25.6                              | 1.62                           | 1.13                                        | 0.95                           | 0.59                                 | 5.33                                    | 3.32                                    |
| 9.97            | 0.0          | 0.0                  | 0.0                   | 0.0                          | 21.3                              | 1.95                           | 1.35                                        | 1.14                           | 0.71                                 | 6.42                                    | 3.97                                    |
| 11.5            | 0.0          | 0.0                  | 0.0                   | 0.0                          | 18.5                              | 2.25                           | 1.56                                        | 1.52                           | 0.82                                 | 8.66                                    | 4.59<br>5.41                            |
| 15.5            | 0.0          | 0.0                  | 0.0                   | 0.0                          | 13.7                              | 3.04                           | 2.11                                        | 1.77                           | 1.10                                 | 10.0                                    | 6.21                                    |
| 18.5            | 0.0          | 0.0                  | 0.0                   | 0.0                          | 11.5                              | 3.63                           | 2.52                                        | 2.12                           | 1.31                                 | 11.9                                    | 7.41                                    |
| 25.3            | 0.0          | 0.0                  | 0.0                   | 0.0                          | 8.39                              | 4.96                           | 3.44                                        | 2.90                           | 1.80                                 | 16.4                                    | 10.1                                    |
| 30.0            | 0.0          | 0.0                  | 0.0                   | 0.0                          | 7.08                              | 5.88                           | 4.08                                        | 3.43                           | 2.12                                 | 19.3                                    | 12.0                                    |
| 47.2            | 0.0          | 0.0                  | 0.0                   | 0.0                          | 4.49                              | 9.25                           | 6.42                                        | 4.26<br>5.40                   | 3.34                                 | 30.4                                    | 14.9                                    |
| 56.6            | 0.3          | 0.4                  | 0.3                   | 0.3                          | 3.75                              | 11.1                           | 7.71                                        | 6.48                           | 4.01                                 | 36.5                                    | 22.7                                    |
| 66.3<br>80.4    | 0.4          | 0.8                  | 0.4                   | 0.7                          | 3.20<br>2.64                      | 13.0<br>15.8                   | 9.03<br>11.0                                | 7.59<br>9.20                   | 4.70<br>5.70                         | 42.7<br>51.8                            | 26.6<br>32.4                            |
| 93.0            | 2.7          | 5.2                  | 2.7                   | 5.0                          | 2.28                              | 18.2                           | 12.6                                        | 10.6                           | 6.56                                 | 59.6                                    | 37.1                                    |
| 111             | 4.6          | 9.8                  | 4.6                   | 9.7                          | 1.91                              | 21.8                           | 15.1                                        | 12.7                           | 7.86                                 | 71.5                                    | 44.4                                    |
| 129             | 6.8          | 23.7                 | 6.8                   | 23.5                         | 1.05                              | 25.5                           | 20.7                                        | 14.8                           | 10.8                                 | 83.3<br>98.2                            | 60.9                                    |
| 179             | 9.2          | 32.9                 | 9.3                   | 32.8                         | 1.18                              | 35.1                           | 24.4                                        | 20.5                           | 12.7                                 | 115                                     | 71.8                                    |
| 210<br>247      | 6.9<br>5.6   | 39.8<br>45.4         | 6.9<br>5.7            | 39.7<br>45.3                 | 1.01                              | 41.2<br>48.4                   | 28.6                                        | 24.0                           | 14.9<br>17.5                         | 135                                     | 84.1<br>98.8                            |
| 292             | 9.5          | 54.9                 | 9.5                   | 54.8                         | 0.726                             | 57.3                           | 39.8                                        | 33.4                           | 20.7                                 | 188                                     | 117                                     |
| 343             | 6.1          | 61.0                 | 6.1                   | 60.9<br>67.0                 | 0.619                             | 67.3                           | 46.7                                        | 39.3                           | 24.3                                 | 221                                     | 137                                     |
| 472             | 5.7          | 72.8                 | 5.7                   | 72.8                         | 0.328                             | 92.5                           | 64.2                                        | 54.0                           | 33.4                                 | 304                                     | 189                                     |
| 553             | 5.9          | 78.7                 | 5.9                   | 78.7                         | 0.383                             | 108                            | 75.0                                        | 63.3                           | 39.2                                 | 356                                     | 221                                     |
| 757             | 5.7          | 84.4<br>89.7         | 5.7                   | 84.4<br>89.7                 | 0.328                             | 127                            | 103                                         | 74.0<br>86.6                   | 43.8<br>53.6                         | 416                                     | 303                                     |
| 887             | 5.2          | 94.9                 | 5.3                   | 94.9                         | 0.239                             | 174                            | 121                                         | 102                            | 63.1                                 | 574                                     | 356                                     |
| 1048            | 4.0          | 99.0<br>100.0        | 4.1                   | 99.0<br>100.0                | 0.202                             | 205<br>241                     | 142                                         | 120<br>140                     | 74.3<br>86.7                         | 675<br>788                              | 418<br>491                              |
| 1439            | 0.0          | 100.0                | 0.0                   | 100.0                        | 0.147                             | 282                            | 196                                         | 165                            | 102                                  | 927                                     | 576                                     |
| 1688            | 0.0          | 100.0                | 0.0                   | 100.0                        | 0.126                             | 331                            | 230                                         | 193                            | 119                                  | 1082                                    | 676                                     |
| 2142            | 0.0          | 100.0                | 0.0                   | 100.0                        | 0.0990                            | 420                            | 249 292                                     | 209                            | 129                                  | 1382                                    | 859                                     |
| 2510            | 0.0          | 100.0                | 0.0                   | 100.0                        | 0.0845                            | 492                            | 342                                         | 287                            | 178                                  | 1618                                    | 1006                                    |
| 2945<br>3449    | 0.0          | 100.0                | 0.0                   | 100.0                        | 0.0720<br>0.0615                  | 577<br>676                     | 401<br>469                                  | 337<br>395                     | 209<br>245                           | 1900<br>2227                            | 1179                                    |
| 4040            | 0.0          | 100.0                | 0.0                   | 100.0                        | 0.0525                            | 792                            | 550                                         | 462                            | 286                                  | 2600                                    | 1618                                    |
| 4728            | 0.0          | 100.0                | 0.0                   | 100.0                        | 0.0448                            | 927                            | 644                                         | 541                            | 335                                  | 3045                                    | 1894                                    |
| 6002            | 0.0          | 100.0                | 0.0                   | 100.0                        | 0.0353                            | 1177                           | 817                                         | 687                            | 425                                  | 3864                                    | 2403                                    |
| 7033            | 0.0          | 100.0                | 0.0                   | 100.0                        | 0.0301                            | 1379                           | 958                                         | 805                            | 498                                  | 4527                                    | 2818                                    |
| 7895<br>8920    | 0.0<br>0.0   | 100.0                | 0.0                   | 100.0                        | 0.0269                            | 1548<br>1749                   | 1075                                        | 904<br>1021                    | 560<br>632                           | 5091<br>5745                            | 3162<br>3574                            |
| 9649            | 0.0          | 100.0                | 0.0                   | 100.0                        | 0.0220                            | 1892                           | 1314                                        | 1104                           | 683                                  | 6209                                    | 3865                                    |
| 10452           | 0.0          | 100.0                | 0.0                   | 100.0                        | 0.0203                            | 2049                           | 1423                                        | 1196                           | 740<br>870                           | 6727                                    | 4185                                    |
| 14333           | 0.0          | 100.0                | 0.0                   | 100.0                        | 0.0148                            | 2810                           | 1951                                        | 1640                           | 1015                                 | 9227                                    | 5738                                    |
| 16381           | 0.0          | 100.0                | 0.0                   | 100.0                        | 0.0129                            | 3212                           | 2231                                        | 1875                           | 1161                                 | 10555                                   | 6562                                    |
| 18481 20481     | 0.0          | 100.0                | 0.0                   | 100.0                        | 0.0115<br>0.0104                  | 3624<br>4016                   | 2517<br>2789                                | 2115                           | 1309<br>1451                         | 11900<br>13191                          | 7403<br>8203                            |
| 23149           | 0.0          | 100.0                | 0.0                   | 100.0                        | 0.0092                            | 4539                           | 3152                                        | 2649                           | 1640                                 | 14909                                   | 9271                                    |
| 25064           | 0.0          | 100.0                | 0.0                   | 100.0                        | 0.0085                            | 4915                           | 3413                                        | 2868                           | 1775                                 | 16136                                   | 10038                                   |
| 2/135<br>29376  | 0.0          | 100.0                | 0.0                   | 100.0                        | 0.0078                            | 5321<br>5760                   | 3095<br>4000                                | 3362                           | 2081                                 | 1/4/3 18918                             | 10868                                   |
| 31804           | 0.0          | 100.0                | 0.0                   | 100.0                        | 0.0067                            | 6236                           | 4331                                        | 3640                           | 2253                                 | 20482                                   | 12738                                   |
| 34421           | 0.0          | 100.0                | 0.0                   | 100.0                        | 0.0062                            | 6749<br>7293                   | 4687                                        | 3939<br>4256                   | 2438                                 | 22164                                   | 13785                                   |
| 40343           | 0.0          | 100.0                | 0.0                   | 100.0                        | 0.0053                            | 7910                           | 5493                                        | 4617                           | 2858                                 | 25982                                   | 16156                                   |
| 43591           | 0.0          | 100.0                | 0.0                   | 100.0                        | 0.0049                            | 8547                           | 5935                                        | 4989                           | 3088                                 | 28073                                   | 17456                                   |
| 47291<br>51172  | 0.0<br>0.0   | 100.0<br>100.0       | 0.0                   | 100.0<br>100 0               | 0.0045                            | 9273<br>10034                  | 6440<br>6968                                | 5412<br>5856                   | 3350<br>3625                         | 30455<br>32955                          | 18941<br>20494                          |
| 55387           | 0.0          | 100.0                | 0.0                   | 100.0                        | 0.0038                            | 10860                          | 7542                                        | 6339                           | 3924                                 | 35673                                   | 22182                                   |
| 59880           | 0.0          | 100.0                | 0.0                   | 100.0                        | 0.0035                            | 11741                          | 8153                                        | 6853                           | 4242                                 | 38564                                   | 23979                                   |







(C) Pore Size Distribution plot

| Well<br>Sample  | Depth                                   |                 | W<br>2     | /rasse-1<br>589.89 r    | n                    |                         |                     |                 |                        |                     |                        |
|-----------------|-----------------------------------------|-----------------|------------|-------------------------|----------------------|-------------------------|---------------------|-----------------|------------------------|---------------------|------------------------|
| Client          | Geoscience A                            | Victoria        |            | Density (               | Gradients (psi/foot) | T                       | Con                 | version Paramet | ers (dvnes/cm          | )                   |                        |
| Well            | Wrasse-1                                |                 |            |                         | Typical              |                         |                     | air/water       | air/oil                | oil/water           | CO <sub>2</sub> /water |
|                 |                                         |                 |            | Water:                  | 0.440                | Laboratory The          | ta                  | 0.0             | 0.0                    | 30.0                | 0.0                    |
| Test Method     | Air/Mercury                             | Capillary Press | ure        | Oil:                    | 0.330                | Laboratory IFT          |                     | 72.0            | 24.0                   | 48.0                | 72.0                   |
|                 |                                         |                 |            | Gas:                    | 0.100                | Reservoir Theta         | 1                   | 0.0             |                        | 30.0                | 0.0                    |
| Sample          | W1                                      |                 |            | 00 D 1                  | 0.577                | Reservoir IFT           |                     | 50.0            | 21.0                   | 30.0                | 26.0                   |
| Depth           | 2589.89 m                               |                 |            | CO <sub>2</sub> Density | 0.567                | Laboratory Ico          | s I heta            | 72.0            | 24.0                   | 42.0                | 72.0                   |
|                 |                                         |                 |            |                         | Estimated Column     | Reservoir I cos         | I heta              | 50.0            | Dragaura (ncia)        | 26.0<br>Threshold B | 26.0                   |
| Pore radius (   | um)                                     | 0.017           |            | System                  | Height (feet)        | Lab                     | Res Con             | Lab             | Resv                   | Lab                 | Resv                   |
| i ore radius (j | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 0.017           |            | A-Hg                    | na                   | 6149                    | -                   | 7271            | -                      | 8025                | -                      |
|                 |                                         |                 |            | G-W                     | 2464                 | 1206                    | 838                 | 1426            | 991                    | 1574                | 1093                   |
|                 |                                         |                 |            | O-W                     | 3960                 | 402                     | 436                 | 475             | 515                    | 525                 | 569                    |
|                 |                                         |                 |            | CO <sub>2</sub> -W      | 2326                 | 1206                    | 436                 | 1426            | 515                    | 1574                | 569                    |
|                 |                                         |                 |            |                         |                      | E 1 1 4                 | L' C D              | 0.1/0           | 0.1/D :                | TT 1 1 41           | 11 1 1 4 1             |
|                 | Pau                                     | Data            | Conform    | maa Corrected           | Doro                 | Equivalent<br>Air/Prino | Injection Pressures | Oil/Brine       | Oil/Brine<br>Basaruair | Height Above        | Height Abov            |
| Pressure        | Intrusion                               | Saturation      | Intrusion  | Saturation              | <br>Diameter         | Lab                     | Res Con             | Conditions      | Conditions             | Oil-Water           | Gas-Water              |
| (psia)          | (percent)                               | (percent)       | (percent)  | (percent)               | (μm)                 | (psi)                   | (psi)               | (psi)           | (psi)                  | (feet)              | (feet)                 |
| · · ·           | ų ,                                     | ų ,             | ų ,        | ч ,                     | N 2                  | <i>u</i> ,              | ч.У.                | ч.)             | ч <i>ў</i>             |                     | . ,                    |
| 1.00            | 0.0                                     | 0.0             | 0.0        | 0.0                     | 211                  | 0.20                    | 0.14                | 0.11            | 0.07                   | 0.64                | 0.40                   |
| 1.98            | 0.0                                     | 0.0             | 0.0        | 0.0                     | 107                  | 0.39                    | 0.27                | 0.23            | 0.14                   | 1.28                | 0.79                   |
| 2.73            | 2.7                                     | 2.7             | 0.0        | 0.0                     | 77.6                 | 0.54                    | 0.37                | 0.31            | 0.19                   | 1.75                | 1.09                   |
| 3.18            | 0.7                                     | 3.4             | 0.0        | 0.0                     | 66.7                 | 0.62                    | 0.43                | 0.36            | 0.23                   | 2.05                | 1.27                   |
| 5.75<br>4.38    | 0.4                                     | 5.7             | 0.0        | 0.0                     | 50.9<br>48.4         | 0.73                    | 0.51                | 0.43            | 0.26                   | 2.40                | 1.49                   |
| 5.18            | 0.4                                     | 4.4             | 0.0        | 0.0                     | 41.0                 | 1.02                    | 0.00                | 0.50            | 0.37                   | 3.34                | 2.08                   |
| 5.98            | 0.3                                     | 4.8             | 0.0        | 0.0                     | 35.5                 | 1.17                    | 0.81                | 0.68            | 0.42                   | 3.85                | 2.39                   |
| 6.97            | 0.3                                     | 5.1             | 0.0        | 0.0                     | 30.4                 | 1.37                    | 0.95                | 0.80            | 0.49                   | 4.49                | 2.80                   |
| 8.27            | 0.3                                     | 5.4             | 0.0        | 0.0                     | 25.6                 | 1.62                    | 1.13                | 0.95            | 0.59                   | 5.33                | 3.32                   |
| 9.97            | 0.3                                     | 5.7             | 0.0        | 0.0                     | 21.3                 | 1.95                    | 1.35                | 1.14            | 0.71                   | 6.42                | 3.97                   |
| 11.5            | 0.4                                     | 6.1             | 0.0        | 0.0                     | 18.5                 | 2.25                    | 1.56                | 1.32            | 0.82                   | 7.43                | 4.59                   |
| 15.5            | 0.3                                     | 6.7             | 0.0        | 0.0                     | 13.7                 | 2.65                    | 2.11                | 1.34            | 0.93                   | 8.00                | 5.41                   |
| 18.5            | 0.3                                     | 7.0             | 0.0        | 0.0                     | 11.5                 | 3.63                    | 2.52                | 2.12            | 1.31                   | 11.9                | 7.41                   |
| 21.6            | 0.4                                     | 7.3             | 0.0        | 0.0                     | 9.83                 | 4.24                    | 2.94                | 2.47            | 1.53                   | 13.9                | 8.65                   |
| 25.3            | 0.3                                     | 7.6             | 0.0        | 0.0                     | 8.39                 | 4.96                    | 3.44                | 2.90            | 1.80                   | 16.4                | 10.1                   |
| 30.0            | 0.3                                     | 8.0             | 0.0        | 0.0                     | 7.08                 | 5.88                    | 4.08                | 3.43            | 2.12                   | 19.3                | 12.0                   |
| 37.2            | 0.5                                     | 8.4             | 0.0        | 0.0                     | 5.70                 | 7.29                    | 5.06                | 4.26            | 2.64                   | 24.0                | 14.9                   |
| 47.2            | 0.1                                     | 8.5             | 0.0        | 0.0                     | 4.49                 | 9.25                    | 6.42                | 5.40            | 3.34                   | 30.4                | 18.9                   |
| 66.3            | 0.1                                     | 8.6             | 0.0        | 0.0                     | 3 20                 | 13.0                    | 9.03                | 7 59            | 4.01                   | 42.7                | 26.6                   |
| 80.4            | 0.1                                     | 8.8             | 0.0        | 0.0                     | 2.64                 | 15.8                    | 11.0                | 9.20            | 5.70                   | 51.8                | 32.4                   |
| 93.0            | 0.1                                     | 8.9             | 0.0        | 0.0                     | 2.28                 | 18.2                    | 12.6                | 10.6            | 6.56                   | 59.6                | 37.1                   |
| 111             | 0.1                                     | 9.0             | 0.0        | 0.0                     | 1.91                 | 21.8                    | 15.1                | 12.7            | 7.86                   | 71.5                | 44.4                   |
| 129             | 0.2                                     | 9.2             | 0.0        | 0.0                     | 1.65                 | 25.3                    | 17.6                | 14.8            | 9.16                   | 83.3                | 51.8                   |
| 152             | 0.2                                     | 9.4             | 0.0        | 0.0                     | 1.39                 | 29.8                    | 20.7                | 17.4            | 10.8                   | 98.2                | 60.9                   |
| 210             | 0.2                                     | 9.0             | 0.0        | 0.0                     | 1.18                 | 55.1<br>41.2            | 24.4                | 20.5            | 12.7                   | 115                 | /1.8                   |
| 247             | 0.3                                     | 10.0            | 0.0        | 0.0                     | 0.860                | 48.4                    | 33.6                | 28.3            | 17.5                   | 159                 | 98.8                   |
| 292             | 0.2                                     | 10.3            | 0.0        | 0.0                     | 0.726                | 57.3                    | 39.8                | 33.4            | 20.7                   | 188                 | 117                    |
| 343             | 0.3                                     | 10.5            | 0.0        | 0.0                     | 0.619                | 67.3                    | 46.7                | 39.3            | 24.3                   | 221                 | 137                    |
| 401             | 0.3                                     | 10.8            | 0.0        | 0.0                     | 0.528                | 78.6                    | 54.6                | 45.9            | 28.4                   | 258                 | 161                    |
| 472             | 0.3                                     | 11.1            | 0.0        | 0.0                     | 0.449                | 92.5                    | 64.2                | 54.0            | 33.4                   | 304                 | 189                    |
| 553             | 0.3                                     | 11.4            | 0.0        | 0.0                     | 0.383                | 108                     | 75.0                | 63.3            | 39.2                   | 356                 | 221                    |
| 757             | 0.3                                     | 12.0            | 0.0        | 0.0                     | 0.280                | 148                     | 103                 | 86.6            | 53.6                   | 487                 | 303                    |
| 887             | 0.3                                     | 12.3            | 0.0        | 0.0                     | 0.239                | 174                     | 103                 | 102             | 63.1                   | 574                 | 356                    |
| 1048            | 0.4                                     | 12.7            | 0.0        | 0.0                     | 0.202                | 205                     | 142                 | 120             | 74.3                   | 675                 | 418                    |
| 1227            | 0.5                                     | 13.2            | 0.0        | 0.0                     | 0.173                | 241                     | 167                 | 140             | 86.7                   | 788                 | 491                    |
| 1439            | 0.5                                     | 13.6            | 0.0        | 0.0                     | 0.147                | 282                     | 196                 | 165             | 102                    | 927                 | 576                    |
| 1688            | 0.5                                     | 14.2            | 0.0        | 0.0                     | 0.126                | 331                     | 230                 | 193             | 119                    | 1082                | 676                    |
| 1828            | 0.6                                     | 14.8            | 0.0        | 0.0                     | 0.116                | 358<br>420              | 249                 | 209             | 129                    | 1173                | 732                    |
| 2510            | 0.5                                     | 15.8            | 0.0        | 0.0                     | 0.0845               | 492                     | 342                 | 287             | 178                    | 1618                | 1006                   |
| 2945            | 0.8                                     | 16.5            | 0.0        | 0.0                     | 0.0720               | 577                     | 401                 | 337             | 209                    | 1900                | 1179                   |
| 3449            | 0.9                                     | 17.4            | 0.0        | 0.0                     | 0.0615               | 676                     | 469                 | 395             | 245                    | 2227                | 1379                   |
| 4040            | 1.0                                     | 18.4            | 0.0        | 0.0                     | 0.0525               | 792                     | 550                 | 462             | 286                    | 2600                | 1618                   |
| 4728            | 1.2                                     | 19.5            | 0.0        | 0.0                     | 0.0448               | 927                     | 644                 | 541             | 335                    | 3045                | 1894                   |
| 5114            | 2.1                                     | 21.6            | 0.0        | 0.0                     | 0.0415               | 1003                    | 697                 | 585             | 362                    | 3291                | 2050                   |
| 6002            | 1.0                                     | 22.6            | 1.3        | 1.3                     | 0.0353               | 1177                    | 817                 | 687             | 425                    | 3864                | 2403                   |
| 7895            | 2.7<br>4.5                              | 23.5<br>29.9    | 5.5<br>5.8 | 4.8                     | 0.0301               | 1579                    | 958<br>1075         | 805<br>904      | 498                    | 4027<br>5091        | 2010                   |
| 8920            | 5.4                                     | 35.2            | 6.9        | 17.4                    | 0.0238               | 1749                    | 1215                | 1021            | 632                    | 5745                | 3574                   |



3865 4185

4918 5738

6562 7403

8203 9271

10038 10868

11765 12738

13785

14897

16156 17456

18941

20494

22182 23979

55387 59880 100.0 100.0 100.0 100.0 (A) Interpreted Capillary Pressure Chart

42.9 49.8

57.6 71.8

87.6 100.0

100.0 100.0

100.0

100.0

100.0 100.0

100.0

100.0

100.0 100.0

100.0 100.0

5.8 6.9 9.7 8.9 9.9 18.1

20.2 15.8

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0

0.0

27.1 36.0

45.9

64.0 84.2 100.0

100.0 100.0

100.0 100.0

100.0 100.0

100.0 100.0

100.0 100.0

100.0 100.0

0.0220 0.0203

0.0173

0.0148

0.0129 0.0115

0.0104 0.0092

0.0085 0.0078

0.0072 0.0067

0.0062

0.0057

0.0053 0.0049

0.0045

0.0041

0.0038 0.0035

1892 2049

2408 2810

3212 3624

4016 4539

4915 5321

5760 6236

6749 7293

7910 8547

9273

10034

10860

11741

1314 1423

1672 1951

2231 2517

2789 3152

3413

3695

4000 4331

4687 5065

5493 5935

6440

6968

7542 8153

1104 1196

1406

1640

1875 2115

2344 2649

2868

3105

3362 3640 3939

4256

6339

6853

683 740

870 1015

1161 1309

1451 1640

1775

1922

2081 2253

2438

2635

2858 3088

3350

3625

3924 4242

6209 6727

7909 9227

10555 11900

13191 14909

16136 17473

18918 20482

22164

23955

25982 28073

30455

32955

35673 38564

2.7 4.5 5.4 7.6 7.0 7.7 14.2 15.8 12.4

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0

0.0

9649 10452

12283 14333

16381 18481

20481 23149

25064 27135

29376 31804

34421

37192







(C) Pore Size Distribution plot

| Well<br>Sample | Depth        |                  | \<br>I    | Wurruk W<br>584.9 m     | urruk-13            |                                  |                      |                 |                 |              |                        |
|----------------|--------------|------------------|-----------|-------------------------|---------------------|----------------------------------|----------------------|-----------------|-----------------|--------------|------------------------|
| Client         | Geoscience A | Victoria         |           | Density G               | radients (psi/foot) |                                  | Con                  | version Paramet | ers (dynes/cm)  | )            |                        |
| Well           | Wurruk Wur   | ruk-13           |           |                         | Typical             |                                  |                      | air/water       | air/oil         | oil/water    | CO <sub>2</sub> /water |
|                |              |                  |           | Water:                  | 0.440               | Laboratory Thet                  | ta                   | 0.0             | 0.0             | 30.0         | 0.0                    |
| Test Method    | Air/Mercury  | Capillary Pressu | ire       | Oil:<br>Gasi            | 0.330               | Laboratory IFT                   |                      | 72.0            | 24.0            | 48.0         | 72.0                   |
| Sample         | WW13         |                  |           | Gas:                    | 0.100               | Reservoir Theta<br>Reservoir IET | l                    | 50.0            |                 | 30.0         | 26.0                   |
| Denth          | 584 90 m     |                  |           | CO <sub>2</sub> Density | 0 145               | Laboratory Tcos                  | sTheta               | 72.0            | 24.0            | 42.0         | 72.0                   |
|                |              |                  |           | 2                       |                     | Reservoir TcosT                  | Theta                | 50.0            |                 | 26.0         | 26.0                   |
|                |              |                  |           |                         | Estimated Column    | Entry P                          | Pressure (psia)      | Displacement I  | Pressure (psia) | Threshold F  | ressure (psia)         |
| Pore radius (µ | m)           | 0.702            |           | System                  | Height (feet)       | Lab                              | Res Con              | Lab             | Resv            | Lab          | Resv                   |
|                |              |                  |           | A-Hg<br>C W             | na 61               | 152                              | - 20.7               | 41.3            | - 28.7          | 234          | - 21.0                 |
|                |              |                  |           | O-W                     | 98                  | 9.92                             | 10.7                 | 13.8            | 14.9            | 15.3         | 16.6                   |
|                |              |                  |           | CO <sub>2</sub> -W      | 29                  | 29.8                             | 10.7                 | 41.3            | 14.9            | 45.9         | 16.6                   |
|                |              |                  |           |                         |                     |                                  |                      |                 |                 |              |                        |
|                |              |                  |           |                         |                     | Equivalent                       | Injection Pressures  | Oil/Brine       | Oil/Brine       | Height Above | Height Above           |
| Draggura       | Intrusion    | Data             | Conform   | ance Corrected          | Pore                | Air/Brine                        | Air/Brine<br>Bac Con | Lab             | Reservoir       | Free Water   | Free Water             |
| (nsia)         | (nercent)    | (percent)        | (percent) | (percent)               | (um)                | (nsi)                            | (nsi)                | (nsi)           | (nsi)           | (feet)       | (feet)                 |
| (1.1.1.)       | (1)          | (†)              | (J)       | (1)                     | (1111)              | (1.0.)                           | (1)                  | (1)             | (1)             | ()           | ()                     |
|                |              |                  |           |                         |                     |                                  |                      |                 |                 |              |                        |
| 1.00           | 0.0          | 0.0              | 0.0       | 0.0                     | 211                 | 0.20                             | 0.14                 | 0.11            | 0.07            | 0.64         | 0.40                   |
| 1.98           | 1.4          | 1.4              | 0.0       | 0.0                     | 107                 | 0.39                             | 0.27                 | 0.23            | 0.14            | 1.28         | 0.79                   |
| 2.73           | 0.0          | 2.0              | 0.0       | 0.0                     | 66 7                | 0.54                             | 0.57                 | 0.31            | 0.19            | 2.05         | 1.09                   |
| 3.73           | 0.4          | 2.7              | 0.0       | 0.0                     | 56.9                | 0.73                             | 0.51                 | 0.43            | 0.25            | 2.40         | 1.49                   |
| 4.38           | 0.4          | 3.1              | 0.0       | 0.0                     | 48.4                | 0.86                             | 0.60                 | 0.50            | 0.31            | 2.82         | 1.76                   |
| 5.18           | 0.4          | 3.5              | 0.0       | 0.0                     | 41.0                | 1.02                             | 0.71                 | 0.59            | 0.37            | 3.34         | 2.08                   |
| 5.98           | 0.3          | 3.8              | 0.0       | 0.0                     | 35.5                | 1.17                             | 0.81                 | 0.68            | 0.42            | 3.85         | 2.39                   |
| 6.97<br>8.27   | 0.4          | 4.2              | 0.0       | 0.0                     | 30.4<br>25.6        | 1.37                             | 0.95                 | 0.80            | 0.49            | 4.49         | 2.80                   |
| 9.97           | 0.5          | 5.2              | 0.0       | 0.0                     | 21.3                | 1.95                             | 1.35                 | 1.14            | 0.71            | 6.42         | 3.97                   |
| 11.5           | 0.4          | 5.5              | 0.0       | 0.0                     | 18.5                | 2.25                             | 1.56                 | 1.32            | 0.82            | 7.43         | 4.59                   |
| 13.5           | 0.4          | 6.0              | 0.0       | 0.0                     | 15.7                | 2.65                             | 1.84                 | 1.54            | 0.95            | 8.66         | 5.41                   |
| 15.5           | 0.4          | 6.3              | 0.0       | 0.0                     | 13.7                | 3.04                             | 2.11                 | 1.77            | 1.10            | 10.0         | 6.21                   |
| 18.5           | 0.5          | 7.3              | 0.0       | 0.0                     | 9.83                | 5.05<br>4.24                     | 2.52                 | 2.12            | 1.51            | 11.9         | 7.41                   |
| 25.3           | 0.5          | 7.9              | 0.0       | 0.0                     | 8.39                | 4.96                             | 3.44                 | 2.90            | 1.80            | 16.4         | 10.1                   |
| 30.0           | 1.2          | 9.0              | 0.0       | 0.0                     | 7.08                | 5.88                             | 4.08                 | 3.43            | 2.12            | 19.3         | 12.0                   |
| 37.2           | 0.2          | 9.2              | 0.0       | 0.0                     | 5.70                | 7.29                             | 5.06                 | 4.26            | 2.64            | 24.0         | 14.9                   |
| 47.2           | 0.2          | 9.4              | 0.0       | 0.0                     | 4.49                | 9.25                             | 6.42                 | 5.40            | 3.34            | 30.4         | 18.9                   |
| 56.6           | 0.2          | 9.6              | 0.2       | 0.2                     | 3.75                | 11.1                             | 7.71                 | 6.48<br>7.59    | 4.01            | 36.5         | 22.7                   |
| 80.4           | 0.5          | 10.1             | 0.5       | 1.5                     | 2.64                | 15.8                             | 11.0                 | 9.20            | 5 70            | 51.8         | 32.4                   |
| 93.0           | 0.9          | 11.7             | 1.0       | 2.5                     | 2.28                | 18.2                             | 12.6                 | 10.6            | 6.56            | 59.6         | 37.1                   |
| 111            | 1.1          | 12.9             | 1.3       | 3.8                     | 1.91                | 21.8                             | 15.1                 | 12.7            | 7.86            | 71.5         | 44.4                   |
| 129            | 1.4          | 14.3             | 1.6       | 5.4                     | 1.65                | 25.3                             | 17.6                 | 14.8            | 9.16            | 83.3         | 51.8                   |
| 152            | 1.8          | 16.2             | 2.0       | 7.4                     | 1.39                | 29.8                             | 20.7                 | 17.4            | 10.8            | 98.2         | 60.9                   |
| 210            | 3.4          | 22.3             | 3.8       | 10.4                    | 1.18                | 35.1<br>41.2                     | 24.4                 | 20.5            | 12.7            | 135          | /1.8                   |
| 247            | 5.6          | 27.9             | 6.2       | 20.4                    | 0.860               | 48.4                             | 33.6                 | 28.3            | 17.5            | 159          | 98.8                   |
| 292            | 8.9          | 36.8             | 9.8       | 30.2                    | 0.726               | 57.3                             | 39.8                 | 33.4            | 20.7            | 188          | 117                    |
| 343            | 11.9         | 48.6             | 13.1      | 43.3                    | 0.619               | 67.3                             | 46.7                 | 39.3            | 24.3            | 221          | 137                    |
| 401            | 13.4         | 62.1             | 14.8      | 58.1                    | 0.528               | 78.6                             | 54.6                 | 45.9            | 28.4            | 258          | 161                    |
| 553            | 17.8         | 96.5             | 10.5      | 96.1                    | 0.383               | 92.5                             | 75.0                 | 63.3            | 39.2            | 356          | 221                    |
| 647            | 0.9          | 97.4             | 1.0       | 97.1                    | 0.328               | 127                              | 88.2                 | 74.0            | 45.8            | 416          | 259                    |
| 757            | 0.0          | 97.4             | 0.0       | 97.2                    | 0.280               | 148                              | 103                  | 86.6            | 53.6            | 487          | 303                    |
| 887            | 0.0          | 97.5             | 0.0       | 97.2                    | 0.239               | 174                              | 121                  | 102             | 63.1            | 574          | 356                    |
| 1048           | 0.1          | 97.5             | 0.1       | 97.3                    | 0.202               | 205                              | 142                  | 120             | 74.3            | 675          | 418                    |
| 1439           | 0.2          | 97.7             | 0.2       | 97.4                    | 0.173               | 241 282                          | 107                  | 140             | 102             | 927          | 576                    |
| 1688           | 0.4          | 98.4             | 0.5       | 98.2                    | 0.126               | 331                              | 230                  | 193             | 119             | 1082         | 676                    |
| 1828           | 0.2          | 98.6             | 0.2       | 98.4                    | 0.116               | 358                              | 249                  | 209             | 129             | 1173         | 732                    |
| 2142           | 0.2          | 98.8             | 0.3       | 98.7                    | 0.0990              | 420                              | 292                  | 245             | 152             | 1382         | 859                    |
| 2510           | 0.2          | 99.0             | 0.3       | 98.9                    | 0.0845              | 492                              | 342                  | 287             | 178             | 1618         | 1006                   |
| 2945           | 0.3          | 99.3             | 0.3       | 99.2                    | 0.0720              | 577                              | 401                  | 337             | 209             | 1900         | 11/9                   |
| 4040           | 0.2          | 99.8             | 0.2       | 99.7                    | 0.0525              | 792                              | 550                  | 462             | 245             | 2600         | 1618                   |
| 4728           | 0.1          | 99.9             | 0.2       | 99.9                    | 0.0448              | 927                              | 644                  | 541             | 335             | 3045         | 1894                   |
| 5114           | 0.0          | 100.0            | 0.1       | 100.0                   | 0.0415              | 1003                             | 697                  | 585             | 362             | 3291         | 2050                   |
| 6002           | 0.0          | 100.0            | 0.0       | 100.0                   | 0.0353              | 1177                             | 817                  | 687             | 425             | 3864         | 2403                   |
| 7033           | 0.0          | 100.0            | 0.0       | 100.0                   | 0.0301              | 1379                             | 958                  | 805             | 498             | 4527         | 2818                   |
| 8920           | 0.0          | 100.0            | 0.0       | 100.0                   | 0.0209              | 1749                             | 1075                 | 1021            | 632             | 5745         | 3574                   |
| 9649           | 0.0          | 100.0            | 0.0       | 100.0                   | 0.0220              | 1892                             | 1314                 | 1104            | 683             | 6209         | 3865                   |
| 10452          | 0.0          | 100.0            | 0.0       | 100.0                   | 0.0203              | 2049                             | 1423                 | 1196            | 740             | 6727         | 4185                   |
| 12283          | 0.0          | 100.0            | 0.0       | 100.0                   | 0.0173              | 2408                             | 1672                 | 1406            | 870             | 7909         | 4918                   |
| 14333          | 0.0          | 100.0            | 0.0       | 100.0                   | 0.0148              | 2810                             | 1951                 | 1640            | 1015            | 9227         | 5738                   |
| 16381          | 0.0          | 100.0            | 0.0       | 100.0                   | 0.0129              | 3212                             | 2231                 | 18/5            | 1161            | 10555        | 6562<br>7403           |
| 20481          | 0.0          | 100.0            | 0.0       | 100.0                   | 0.0104              | 4016                             | 2789                 | 2344            | 1451            | 13191        | 8203                   |
| 23149          | 0.0          | 100.0            | 0.0       | 100.0                   | 0.0092              | 4539                             | 3152                 | 2649            | 1640            | 14909        | 9271                   |
| 25064          | 0.0          | 100.0            | 0.0       | 100.0                   | 0.0085              | 4915                             | 3413                 | 2868            | 1775            | 16136        | 10038                  |
| 27135          | 0.0          | 100.0            | 0.0       | 100.0                   | 0.0078              | 5321                             | 3695                 | 3105            | 1922            | 17473        | 10868                  |
| 29376          | 0.0          | 100.0            | 0.0       | 100.0                   | 0.0072              | 5760                             | 4000                 | 3362            | 2081            | 18918        | 11765                  |
| 31804          | 0.0          | 100.0            | 0.0       | 100.0                   | 0.0067              | 6749                             | 4331<br>4687         | 3040            | 2253            | 20482        | 12/38                  |
| 37192          | 0.0          | 100.0            | 0.0       | 100.0                   | 0.0057              | 7293                             | 5065                 | 4256            | 2635            | 23955        | 14897                  |
| 40343          | 0.0          | 100.0            | 0.0       | 100.0                   | 0.0053              | 7910                             | 5493                 | 4617            | 2858            | 25982        | 16156                  |
| 43591          | 0.0          | 100.0            | 0.0       | 100.0                   | 0.0049              | 8547                             | 5935                 | 4989            | 3088            | 28073        | 17456                  |
| 47291          | 0.0          | 100.0            | 0.0       | 100.0                   | 0.0045              | 9273                             | 6440                 | 5412            | 3350            | 30455        | 18941                  |
| 55387          | 0.0          | 100.0            | 0.0       | 100.0                   | 0.0041              | 10034                            | 0908<br>7542         | 5856            | 3625            | 32933        | 20494                  |
| 59880          | 0.0          | 100.0            | 0.0       | 100.0                   | 0.0035              | 11741                            | 8153                 | 6853            | 4242            | 38564        | 23979                  |



(B) Capillary Pressure Plot



(C) Pore Size Distribution plot

### Appendix 3

Values used in the calculation of  $\mathrm{CO}_{\rm 2}$  column heights

|                         | Sample  |          |                          | At sample depth |               | CO <sub>2</sub>      | Interfacial | Brine   | Threshold    | CO <sub>2</sub> |
|-------------------------|---------|----------|--------------------------|-----------------|---------------|----------------------|-------------|---------|--------------|-----------------|
| Well                    | Depth   | Core/SWC | Formation                | Temperature     | Pore pressure | Density              | Tension     | Density | Pressure     | column          |
|                         | (m)     |          |                          | (°C)            | (MPa)         | (g/cm <sup>3</sup> ) | (mN/m)      | (g/cm³) | Air-Hg (psi) | height (m)      |
| Barracouta-1            | 1021.95 | Core     | Lakes Entrance Formation | 58.3            | 10.26         | 0.3205               | 30.52       | 1.0179  | 3001         | 250             |
| Bengworden South-6      | 914.9   | Core     | Lakes Entrance Formation | 59              | 8.96          | 0.2372               | 34.53       | 0.9978  | 3248         | 282             |
| Bundalaguah-10          | 599.8   | Core     | Gippsland Limestone      | 34              | 5.87          | 0.1551               | 38.85       | 1.0077  | 467          | 41              |
| Cod-1                   | 1711.89 | Core     | Lakes Entrance Formation | 71.1            | 17.25         | 0.58                 | 26.92       | 1.0144  | 5787         | 683             |
| Colquhoun East-6        | 180.7   | Core     | Lakes Entrance Formation | 24              | 1.77          | 0.0349               | 59.7        | 1.0032  | 1389         | 164             |
| Dulungalong-2           | 478.1   | Core     | Lakes Entrance Formation | 36              | 4.68          | 0.1065               | 45.74       | 1.0048  | 806          | 78              |
| Flounder-6              | 1929.38 | SWC      | Lakes Entrance Formation | 86.6            | 19.29         | 0.5319               | 27.1        | 1.0053  | 4223         | 460             |
| Fortescue-2             | 2420    | Core     | Lakes Entrance Formation | 104             | 24.22         | 0.5561               | 25.78       | 0.9781  | 3636         | 425             |
| Fortescue-2             | 2430    | Core     | Gurnard Formation        | 104             | 24.33         | 0.5582               | 25.76       | 0.9781  | 2587         | 303             |
| Fortescue-3             | 2411.5  | Core     | Lakes Entrance Formation | 100.5           | 24.12         | 0.5679               | 25.91       | 0.9982  | 5634         | 641             |
| Gippsland Frome Lakes-4 | 503.5   | Core     | Lakes Entrance Formation | 42              | 4.93          | 0.1092               | 45.85       | 1.0022  | 185          | 18              |
| Gippsland Frome Lakes-4 | 506.6   | Core     | Lakes Entrance Formation | 42              | 4.96          | 0.1101               | 45.71       | 1.0023  | 1228         | 120             |
| Golden Beach West-1     | 667.68  | Core     | Lakes Entrance Formation | 30.6            | 6.64          | 0.2133               | 32.82       | 1.0288  | 1138         | 87              |
| Goon Nure-9             | 726.3   | Core     | Lakes Entrance Formation | 35              | 7.11          | 0.2302               | 32.25       | 1.0089  | 2686         | 213             |
| Groper-1                | 909.15  | Core     | Lakes Entrance Formation | 62              | 9.12          | 0.2347               | 34.89       | 0.9961  | 2807         | 246             |
| Groper-1                | 926.1   | Core     | Lakes Entrance Formation | 63.9            | 9.29          | 0.2357               | 34.94       | 1.0154  | 347          | 29              |
| Groper-1                | 932     | Core     | Lakes Entrance Formation | 64.2            | 9.35          | 0.2385               | 34.78       | 1.0154  | 285          | 24              |
| Groper-2                | 747.86  | Core     | Lakes Entrance Formation | 60.7            | 7.48          | 0.171                | 39.69       | 1.0157  | 151          | 13              |
| Hunters Lane-1          | 377     | Core     | Lakes Entrance Formation | 31.2            | 3.74          | 0.0815               | 49.65       | 1.0265  | 182          | 18              |
| Kingfish-3              | 2143.05 | Core     | Lakes Entrance Formation | 85.2            | 21.62         | 0.6003               | 26.59       | 1.0097  | 3730         | 463             |
| Meerlieu-4              | 722     | Core     | Lakes Entrance Formation | 46.6            | 7.07          | 0.1828               | 37.53       | 1.0028  | 2131         | 186             |
| Meerlieu-4              | 769     | Core     | Lakes Entrance Formation | 44              | 7.53          | 0.2152               | 34.56       | 1.0048  | 3602         | 301             |
| Meerlieu-15001          | 699.9   | Core     | Lakes Entrance Formation | 53              | 6.85          | 0.1611               | 40.19       | 0.999   | 1033         | 95              |
| Mullungdung-7           | 363     | Core     | Lakes Entrance Formation | 19              | 3.55          | 0.0833               | 47.72       | 1.0099  | 126          | 12              |
| Sale-13                 | 748.1   | Core     | Lakes Entrance Formation | 53              | 7.33          | 0.1795               | 38.42       | 0.9995  | 1922         | 172             |
| Sale-13                 | 795.6   | Core     | Lakes Entrance Formation | 51              | 7.79          | 0.2054               | 36.06       | 1.0012  | 1962         | 170             |
| Sale-15                 | 628.6   | Core     | Gippsland Limestone      | 35.4            | 6.16          | 0.1657               | 37.86       | 1.0075  | 620          | 53              |
| Seacombe-7              | 947.6   | Core     | Lakes Entrance Formation | 61              | 9.28          | 0.2459               | 34.15       | 0.9969  | 3520         | 306             |
| Sole-1                  | 805.9   | SWC      | Lakes Entrance Formation | 43              | 8.07          | 0.2594               | 31.64       | 1.0059  | 666          | 54              |
| Sperm Whale Head-1      | 653.8   | Core     | Lakes Entrance Formation | 40.8            | 6.4           | 0.1649               | 38.67       | 1.005   | 2229         | 196             |
| Sperm Whale Head-1      | 718.1   | Core     | Lakes Entrance Formation | 44              | 7.03          | 0.1877               | 36.8        | 1.0042  | 3241         | 285             |
| Tuna-1                  | 1160    | Core     | Lakes Entrance Formation | 57.8            | 11.66         | 0.4326               | 27.86       | 1.0207  | 3192         | 289             |
| Woodside South-1        | 522.12  | Core     | Lakes Entrance Formation | 31.2            | 5.25          | 0.1329               | 41.23       | 1.029   | 65           | 6               |
| Wooundellah-10          | 389.3   | Core     | Gippsland Limestone      | 36              | 3.81          | 0.0809               | 50.17       | 1.0032  | 43           | 4               |
| Wooundellah-11          | 389     | Core     | Gippsland Limestone      | 36              | 3.81          | 0.0808               | 50.19       | 1.0032  | 112          | 11              |
| Wrasse-1                | 2589.89 | Core     | Lakes Entrance Formation | 109             | 26.05         | 0.5674               | 25.16       | 0.9754  | 8025         | 947             |
| Wurruk Wurruk-13        | 584.9   | Core     | Lakes Entrance Formation | 36              | 5.73          | 0.1449               | 40.34       | 1.0065  | 234          | 21              |

Corrected temperature gradient from GeoScience Victoria database. Onshore surface temperature =13°C onshore.

Offshore well temperature calculated from database TD gradient (horner plot corrected temperature based on inspection of multiple temperature measurements).

Pore pressure calculation for onshore wells estimated from depth without correction for RT or KB and assuming freshwater pore fluid density. Pressure gradient = 0.433 psi/ft.

Offshore wells depth is corrected for KB elevation and seawater composition is assumed for the pore water density. Pressure gradient = 0.448 psi/ft.

 $CO_2$  density from CO2CRC website calculator. Assumed reservoir entry pressure = 0.28 psi.